Обозначим заданную точку S, а её проекцию на плоскость треугольника О. Если точка S равноудалена от вершин треугольника, то АО=ВО=СО. Поэтому точка О - центр окружности, описанной около треугольника АВС. Находится он на пересечении срединных перпендикуляров сторон треугольника. Рассмотрим треугольник ВОК (К - середина стороны АВ). Угол КВО = 120/2 = 60°, а КОВ = 30°. Тогда ОВ = 5/sin 30 = 5/0.5 = 10 см. Теперь рассмотрим треугольник SOB Искомое расстояниеOS равно √(36²-10²) = √(676-100) = √576 = 24 см.
Обозначим заданную точку S, а её проекцию на плоскость треугольника О. Если точка S равноудалена от вершин треугольника, то АО=ВО=СО. Поэтому точка О - центр окружности, описанной около треугольника АВС. Находится он на пересечении срединных перпендикуляров сторон треугольника. Рассмотрим треугольник ВОК (К - середина стороны АВ). Угол КВО = 120/2 = 60°, а КОВ = 30°. Тогда ОВ = 5/sin 30 = 5/0.5 = 10 см. Теперь рассмотрим треугольник SOB Искомое расстояниеOS равно √(36²-10²) = √(676-100) = √576 = 24 см.
104π см²
36π см³
Объяснение:
Дано:
Цилиндр
D=4см
h=9см.
Sпол=?
V=?
Sбок=D*π*h=4π*9=36π см².
R=D/2=4/2=2см.
Sосн=πR²=2²π=4π см²
Sпол.=Sбок+2*Sосн=96π+2*4π=96π+8π=
=104π см².
V=Sосн*h=4π*9=36π см³