6) Хорды AB и CD пересекаются в точке E, тогда верно равенство
АE·BE=CE·DE
7) Длину окружности можно вычислить по двум формулам: C = 2πr или C = πd, где π – число «пи» (математическая константа, приблизительно равная 3,14) X Источник информации , r – радиус окружности, d – диаметр окружности.
8) Формула для вычисления площади круга
1) Площадь круга равна произведению квадрата радиуса на число пи (3.1415). 2) Площадь круга равна половине произведения длины ограничивающей его окружности на радиус.
9)Окружность называется вписанной в треугольник, если она касается всех его сторон. Окружность называется описанной около треугольника, если она проходит через все его вершины. Теорема 1. Центр окружности, вписанной в треугольник, является точкой пересечения его биссектрис.
Можно обойтись без рисунка, но с рисунком нагляднее.
Рассмотрим рисунок с трапецией АВСД.
Так как трапеция равнобедренная, а углы при основании равны 45°,
высоты из вершин В и С, опущенные на основание АД, отсекают от трапеции два равнобедренных прямоугольных треугольника АВН и СКД.
АН=ВН=СК=КД=АВ*sin(45)
АН=8*(√2):2=4√2
Высота равна 4√2,
АН=КД=4√2
ВС=НК=АД-2*АН=22-8√2
Полусумма оснований (ВС+АД):2=22+22-8√2=22-4√2
S (АВСД)=4√2(22-4√2)=88√2-32 см²