Даны вершины: A,(-3, 3) B (7, 5)C (4, 1).
Угол между прямыми АВ и АС можно определить двумя
1) геометрическим по теореме косинусов,
2) векторным через скалярное произведение.
1) Расчет длин сторон
АВ (с) = √((Хв-Ха)²+(Ув-Уа)²) = √104 ≈ 10,19804.
BC (а)= √((Хc-Хв)²+(Ус-Ув)²) = √25 = 5.
AC (в) = √((Хc-Хa)²+(Ус-Уa)²) = √53 ≈ 7,28011.
cos A= АВ²+АС²-ВС² = 0,88897.
2*АВ*АС
A = 0,475695219 радиан,
A = 27,25532837 градусов .
2) х у Длина
Вектор АВ 10 2 10,19804.
Вектор АС 7 -2 7,28011.
Угол определяем по формуле:
α = arc cos |ax*bx+ay*by|/(√(ax^2+ay^2)*√(bx^2+bу^2)).
α = arc cos |10*7+2*(-2)|/(√104*√53) = 66/2√1378 = 33/√1378 ≈
33/37,12142239 ≈ 0,88897.
Угол дан выше.
.
a - длина ребра тетраэдра
Н=?
пусть MABC правильный тетраэдр. МО=Н - высота тетраэдра
О - точка пересечения медиан, высот, биссектрис правильного треугольника (основания пирамиды), которые в точке пересечения делятся в отношении 2:1, считая от вершины
высота правильного треугольника вычисляется по формуле:
OA=2√6
прямоугольный ΔМОА:
Гипотенуза МА=6√2 см
катет АО=2√6 см
катет МО=Н, найти по теореме Пифагора:
МО²=(6√2)²-(2√6)², МО²=√48. МО=4√3 см. Н=4√3 см