В решение не уверен))) немного мудрёная задачка... скорей всего, я очень сильно намудрил с вписанными углами, сейчас просматривая записи и начинаю очень сильно сомневаться, что данный угол, именно таким можно найти)
угол АВС равняется 93 градусам, данный угол лежит на отрезке окружности АС, следовательно, АС = 93 * 2 = 186 ( т.к. угол АВС - вписанный, значит, он будет равняться половине дуги на которую он опирается)
Угол АДС так же лежит на отрезке окружности АС, значит, он будет как и угол АВС равен 93 градусам.
Угол АДС равен 186 : 2 = 93 градуса ( т.к. угол АДС - вписанный, значит, он будет равняться половине дуги на которую он опирается) ответ: 93 градуса
Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α.
Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору
АЕ=√(AD²-DE²)=√(36²-18²)=18√3.
Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°.
Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²