Площадь боковой поверхности равна 400 * √3 / 3 см2.
Объяснение:
Так как в основании призмы ромб, а его диагонали, в точке пересечения делятся пополам и пересекаются под прямым углом, то треугольник АОД прямоугольный, АО = АС / 2 = 16 / 2 = 8 см, ОД = 12 / 2 = 6 см.
Решение. 1. На прямой "а" откладываем последовательно данные нам отрезки АВ=2см и CD=3см (точки В и С совпадают). 2. При циркуля делим отрезок АD пополам, проведя окружности с центрами в точках А и D равными радиусами R=AD) и соединив точки пересечения окружностей. 3. Из полученной точки О радиусом ОА=ОD проводим полуокружность. 4. Из точки В (С) восстанавливаем перпендикуляр к прямой AD. 5. Точка пересечения полуокружности и этого перпендикуляра даст нам вершину Е прямого угла искомого прямоугольного треугольника. 6. Соединив точки А, Е и D получим искомый прямоугольный треугольник АЕD. Доказательство: <AED=90°, так как опирается на диаметр AD.
Площадь боковой поверхности равна 400 * √3 / 3 см2.
Объяснение:
Так как в основании призмы ромб, а его диагонали, в точке пересечения делятся пополам и пересекаются под прямым углом, то треугольник АОД прямоугольный, АО = АС / 2 = 16 / 2 = 8 см, ОД = 12 / 2 = 6 см.
Тогда, по теореме Пифагора, АД2 = АО2 + ОД2 = 64 + 36 = 100.
АД = 10 см.
Так как призма прямая, то треугольник АДД1 прямоугольный, тогда tg30 = ДД1 / АД.
ДД1 = АД * tg30 = 10 * (1 /√3) = 10 * √3 / 3.
Так как у ромба длины всех сторон равны, то Sбок = 4 * Sаа1д1д = 4 * 10 * 10 * √3 / 3 = 400 * √3 / 3 см2.