Через две пересекающиеся прямые можно провести плоскость, и притом только одну.
Две стороны треугольника однозначно принадлежат ДВУМ пересекающимся прямым - т. е. они принадлежат одной плоскости, обозначим ее β, а т. к. они параллельны другой плоскости из условия обозначим ее α, то и эти обе плоскости параллельны αIIβ. Т .к. две точки третьей стороны принадлежат плоскости β (точки пересечения с другими сторонами, которые ей принадлежат), то и вся она принадлежит β. Т. к. αIIβ то и 3-я сторона II α
1. средние линии треугольника находятся втом же отношении, что и стороны треугольника. обозначим стороны треугольника буквами а, в и с. тогда а: в: с=2: 3: 4, т.е. а=2х, в=3х, с=4х по условию, периметр р=45см, т.е. а+в+с=45 2х+3х+4х=45 9х=45 х=45: 9 х=5(см) а=2х=2*5=10(см) в=3х=3*5=15(см) с=4х=4*5=20(см) ответ: 10 см, 15 см, 20 см.
Объяснение:
Через две пересекающиеся прямые можно провести плоскость, и притом только одну.
Две стороны треугольника однозначно принадлежат ДВУМ пересекающимся прямым - т. е. они принадлежат одной плоскости, обозначим ее β, а т. к. они параллельны другой плоскости из условия обозначим ее α, то и эти обе плоскости параллельны αIIβ. Т .к. две точки третьей стороны принадлежат плоскости β (точки пересечения с другими сторонами, которые ей принадлежат), то и вся она принадлежит β. Т. к. αIIβ то и 3-я сторона II α