Ромб АВСД, АC=D1=30, ВД=D2=40, АВ=ВС=СД=АД=25, точка пересечения диагоналей-
точка О.
Рассмотрим треугольник АВС. ВД перпендикулярно АС (диагонали ромба перпендикулярны и в точке пересечения делятся пополам). АВ=ВС (треугольник равносторонний), АС-основание, ВО-высота к сторне АС. Площадь треугольника равна половине произведения основаня на высоту. АС=30, высота ВО=40:2=20
S=(30*20)/2=300см2
Площадь данного треугольника можно найти также 1/2 умноженное на сторону
ВС=25 и высоту к ней АМ=h (где АМ-высота ромба и высота треугольника АВС)
S=(25*h)1/2=300
25h=600
h=600:25
h=24
высота ромба =24см
Две стороны треугольника равны 3 и 5. Известно, что окружность, проходящая через середины этих сторон и их общую вершину, касается третьей стороны треугольника. Найдите третью сторону.
––––––––––––––––
АН и СН - касательные к окружности.
АВ - секущая, АК - её внешняя часть.
АВ=3, АК=0,5 АВ=1,5
СВ - секущая, СМ - её внешняя часть
СВ=5, СМ=СВ:2=2,5
Квадрат касательной равен произведению секущей на её внешнюю часть. ⇒
АН ²=АВ•AK=3*1,5=4,5=450/100
АН=√4,5=√(450/100)=√(9*25*2:100)=(3•5√2)/10=1,5√2
СН²=СВ•CM=5*2,5=1250/100
CH=√(25•25•2/100)=(25√2)/10=2,5√2
АС=АН+СН=1,5√2+2,5√2=4√2