Площадь трапеции равна 120, её высота равна 8, меньшее основание трапеции составляет 20 % от её большего основания. Найдите меньшее основание трапеции.
Сторона MP^2 равна по теореме пифагора: (Mx-Px)^2+(Му-Ру)^2= (-4-2)^2+(3-7)^2=(36+16)=52
Сторона МТ^2 равна по теореме пифагора ( Мх-Тх)^2+(Му-Ту)^2=(-4-8)^2+(3+2)^2=144+25=169
Сторона РТ^2 равна по теореме Пифагора (Рх-Тх)^2+(Ру-Ту)^2=(2-8)^2+(7+2)^2=36+81=117
Отсюда получаем что по теореме Пифагора для прямоугольного треугольника квадрат гипотенузы равен сумме квадратов катетов. Находим гипотенузу это самая большая сторона соответсвенно это сторона МТ
тогда МТ^2=РТ^2+МР^2 подставляем значения получаем 169=117+52 => 169=169 так как сумма квадратов катетов рана квадрату гипотенузы значит этот треугольник прямоугольный
Пусть центр окружности будет О, и это точка пересечения диаметров. Треугольники АOD и COE равны - их углы равны: при О - как вертикальные, а острые углы вписанные и опираются на равные дуги, ко всему эти треугольники еще и равнобедренные, и на основании этого тоже углы равны. Треугольник АЕD - прямоугольный по условию. DE - катет, AD - гипотенуза. Из доказанного выше равенства треугольников АD=CB=4, тогда синус А= DE:AD=(√3):4 Острый угол DOВ между диаметрами - центральный угол, который опирается на ту же дугу, что угол DАЕ Следовательно,∠DOВ равен 2* ∠DAB sin∠DAE=DE:AD=(√3):4 Синус DOB найдем по формуле = sin 2α=2*sin(α)*cos(α) Косинус α =АЕ:AD АЕ из прямоугольного треугольника AED по т.Пифагора АЕ=√(16-3)=√13 cos∠DAE=(√13):4 Тогда sin DOB=[2*(√3):4]*[(√13):4])= (√39):8=0,7806 и ∠ DOB=arcsin 0,7806 --------------------------- Или: Треугольник АDB - прямоугольный ( ADB опирается на диаметр АВ). DE в нем высота, квадрат которой равен произведению DE²=АЕ*ВЕ 3=(√13)*ВЕ ВЕ=3:√13 Тогда диаметр равен АЕ+ВЕ=√13+3:√13=16:√13, а радиус ОВ=ОD=8:√13 Тогда синус DOB=DE:OD=(√3):(8:√13)= (√39):8=0,7806 и угол DOB=arcsin 0,7806 По таблице синусов можно найти его градусную величину: 51°20' --------------- И "на закуску" то, с чего можно было начать и остановиться на этом. Ясно, что найдя синус угла DAE, мы можем по таблице найти этот угол, а умножив на два его значение, найти искомый угол DOE. Итак, синус ∠DAE=(√3):4=0,4330. По таблице синусов это синус угла 25° 40'. ⇒ ∠ DOВ=2*25° 40'=51°20' ------ [email protected]
ответ: 5.
Объяснение:
Площадь трапеции S=h(a+b)/2=120.
По условию a составляет 20% от b или a=0.2b. Тогда
8(0.2b+b)/2=120;
4*1,2b=120;
4.8b=120;
b=120/4.8;
b=25 см - большее основание трапеции
Находим 20% от 25 => 25*0.2 = 5 - меньшая сторона.