Строишь радиусы в точки, где кончается хорда. Получаешь р/б треугольник с углом при вершине 120 °. Строишь в нем высоту к основанию. Получаешь два равных прямоугольных треугольника с углами 30°, 60°, 90°. Высота делит хорду пополам, поэтому против угла 60° лежит сторона 6 корней из 3. Гипотенуза тр-ков, которая равна радиусу, равна (6 корней из 3)/cos 30 ° = 12. Отсюда, по определению меры угла, длина дуги = 12* (120/180)*ПИ = 8 ПИ. Площадь сектора = ПИ * (радиус в квадрате)*(радианная мера дуги/2ПИ) => ПИ*144*((2ПИ/3)/ПИ)= ПИ*144*(1/3) = 48 ПИ.
1. Градусной мерой дуги окружности называется градусная мера соответствующего центрального угла. Большая дуга содержит 360-122=238 градусов. Каждый градус содержит дугу, равную 61:122=0,5 единиц длины. Длина большей дуги равна 0,5*238=119 Длина большей дуги= 119
360°- вся дуга. 2.Площадь трапеции равна S=1/2(a+b)*h, где a и b основания трапеции, а h высота трапеции. Основания даны, нам нужно узнать высоту трапеции. Рассмотрим получившийся треугольник из боковой стороны трапеции, высоты трапеции и части основания трапеции, которая равна 5 см= ( 18-8)/2. Деленная на 2, т.к. трапеция равнобедренная. Треугольник у нас прямоугольный, значит применяется теорема Пифагора: квадрат гипотенузы равен сумме квадратов катетов. Боковая сторона трапеции - это гипотенуза 13 см, 5 см - это один катет, а высота трапеции - это другой катет.Получаем 13 в квадрате- это 169, 5 в квадрате - это 25, а h в квадрате -это искомое неизвестное.169=25+h в квадрате, решаем уравнение: 169-25=144, выделяем квадрат из 144, он равен 12 см. высота трапеции равна 12 см.Следовательно S трапеции= 1/2(8+18)*12=156 см квадратных.
Площадь сектора = ПИ * (радиус в квадрате)*(радианная мера дуги/2ПИ) => ПИ*144*((2ПИ/3)/ПИ)= ПИ*144*(1/3) =
48 ПИ.