Объяснение:
1)АМ - гипотеза, ВМ-катет против угла 30*,тогда
ВМ=1/2 ВМ=26:2=13
2)<А=90-60=30*,тогда ВМ-катет против угла 30*,ВМ=30:2=15
5)∆АВС - равносторонний, все углы равны и высота является биссектрисой, <МАВ=30*
Расстояние от М до АВ - это перпендикуляр МК к стороне АВ и в ∆МКА МК является катетом против угла 30* и МК=МА:2=8:2=4
6) кратчайшее расстояние от М до АВ - это высота из вершины М.
∆АВМ прямоугольный, равнобедренный и высота МН является медианой. Тогда по свойству медианы прямоугольного треугольника МН=8:2=4
Объяснение:
Теорема 1 (теорема Пифагора). В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы, то есть
c2 = a2 + b2,
где c — гипотенуза треугольника.
Теорема 2. Для прямоугольного треугольника (рис. 1) верны следующие соотношения:
a = c cos β = c sin α = b tg α = b ctg β,
где c — гипотенуза треугольника.
Теорема 3. Пусть ca и cb — проекции катетов a и b прямоугольного треугольника на гипотенузу c, а h — высота этого треугольника, опущенная на гипотенузу (рис. 2). Тогда справедливы следующие равенства:
h2 = ca∙cb, a2 = c∙ca, b2 = c∙cb.
Теорема 4 (теорема косинусов). Для произвольного треугольника справедлива формула
a2 = b2 + c2 – 2bc cos α.