Объяснение:
1. 2, 3
1) ∠PBK и ∠MBL-смежные.
Нет, они вертикальные
2) ∠PBL и ∠MBK-вертикальнвые.
Да, они верикальные, т.к. продолжение сторон одного угла является стороной другого
3) ∠MBK-острый угол.
Да, ∠PBL=∠MBK=72°
72°<90°
4) ∠MBL-прямой угол.
Нет, ∠PBL и ∠MBL-смежные
∠MBL=180°-72°=108°
108°>90°, угол тупой
2. 52°
MA-биссектриса угла, следовательно, она делит угол на две равные части:
∠KMA=∠AML=104°/2=52°
3. ∠DCE=124°
∠DCE и ∠FCE смежные=>∠DCE=180°-56°=124°
4. DC=7см; CF=14см
FD=DC+CF
FD=DC+CF
DC-x
CF-2x
x+2x=21
3x=21
x=7
DC=7 см
CF=14 см
5. ∠NMK=48°
∠KMN=∠OMN-∠OMK=78-30=48°
Объяснение:
125. <AOC=<BOD как вертикальные, △AOC=△BOD по 1му признаку, значит <ACO=<BDO а они накрест лежащие, значит AC ll BD
126. <1+<2=180 по условию, <2+смежный с ним угол тоже =180, значит этот смежный угол =<1, но они соответственные, значит a ll b
129. а) углы по 80 накрест лежащие, значит прямые параллельны, рассматриваем другую секущую, там <x = 40 как соответственные.
Также делаем б) в) доказываем параллельность прямых и рассматриваем другую секущую, где находится искомый угол
Итак, 130.
Здесь мы продолжим прямую СЕ до пересечения с АВ в точке F. Так как AB ll CD, то <DCE=<AFE=70 как накрест лежащие. <AEC - внешний угол в AEF.
Внешний угол треугольника равен сумме двух оставшихся углов треугольника. Значит <AEC=<AFE+<FAE(BAE)=70+40=110°
Умножение вектора на число: p*a=(pXa;pYa;), где p - любое число.
В нашем случае имеем: вектор 5а{15;-10} и вектор 9b{9;-18}.
Разность векторов : a-b=(Xa-Xb;Ya-Yb).
В нашем случае имеем: вектор c=5а-9b={15-9;-10-(-18)}={6;8}.
Итак, мы имеем вектор с{6;8}.
Модуль или длина вектора: |c|=√(Xc²+Yc²) или |с|=√(36+64)=10.
Координаты вектора ab равны разности соответствующих координат точек его конца и начала ab{x2-x1;y2-y1).
В нашем случае координаты вектора с известны: Xc=6 и Yc=8. Известны и координаты его конца: Xm=3 и Ym=2.Пусть точка N - начало вектора с. Зная, что Xc=Xm-Xn и Yc=Ym-Yn, находим координаты начала вектора с (точки N). Эти координаты будут: Xn=Xm-Xc или Xn=3-6=-3 и Yn=Ym-Yc или Yn=2-8=-6.
Остается только на координатной плоскости отметить две точки: N(-3;-6) и M(3;2).
Соединив эти две точки, получим искомый вектор С.