и так строим все это дело, высоты соответственно МН1,АН2,ВН3, треугольник Н3ОА подобен Н3АВ( по двум углам, так как угол АОН3=ВОН2, значит Н3АО=Н2ВО, к тому же при построении получается что АВМ равнобдренный, значит ВН3 еще и биссектриса, значит АВН3=Н3ВН2=Н3АО)
далее АН3=х, тогда ВН3= корень из 3600- х^2, раз подобны значит:
25/60=х/корень из 3600- х^2 , отсюда получаем что х=300/13
далее находим ВН3= корень из 3600- 90000/169
далее находим ОН3= корень из 625-90000/169
площадь АВМ- площадь АОМ и будет нужная площадь
Найдем площадь боковой грани пирамиды. Эта боковая грань - трапеция с основаниями 10 и 8. Найдем ее высоту. Из середины стороны верхнего основания опустим перпендикуляр на плоскость нижнего основания. Соединим основание перпендикуляра с серединой соответствующей стороны нижнего основания. Получим прямоугольный треугольник, в котором гипотенуза будет нужной нам высотой, и ее нужно найти. Один из катетов равен высоте пирамиды, а другой равен (10-8)/2=1, так как сторона верхнего основания на 2 меньше стороны нижнего, а центры верхнего и нижнего оснований совпадают. По теореме Пифагора, гипотенуза треугольника с катетами 1 и корень из 3 равна 2, тогда высота трапеции равна 2, а ее основания - 8 и 10. Тогда площадь трапеции равна 2*(10+8)/2=18. Мы нашли площадь одной грани площадь боковой поверхности в 4 раза больше, так как граней 4, и она равна 18*4=72.