Найдем с уравнения, чему равна сторона данного квадрата.
Обозначим длину стороны данного квадрата через х.
Согласно условию задачи, длина диагонали данного квадрата равна 2.
Поскольку диагональ и две стороны квадрата образуют прямоугольный треугольник, в котором диагональ квадрата является гипотенузой, а стороны квадрата — катетами, можем, используя теорему Пифагора записать следующее уравнение:
х^2 + х^2 = 2^2.
Решая данное уравнение, получаем:
2х^2 = 4;
х^2 = 4 / 2;
х^2 = 2;
x = √2.
Зная длину стороны данного квадрата, находим его площадь S:
S = (√2)^2 = 2.
ответ: площадь данного квадрата равна 2.
Расстояние между прямым В и С будет зависеть от расположения прямой С которая может находиться по разные стороны от прямой А на расстоянии 6дм тогда, при условии что расстояние от А до В равно 4дм,
расстояние между В и С можт быть
1) 6-4=2 Дм при условии что В и С лежат по одну сторону от А
2) 6+4=10 Дм при условии что В и С лежат по разные стороны от А