Рисунок во вложении, хотя можно вполне обойтись без него.
1) Найдем вторую сторону основания параллелепипеда из формулы площади основания. Т.к. он прямоугольный, основание - прямоугольник.
S=a*8=40
а=S:8=40:8=5 см
2) Найдем высоту параллелепипеда из формулы объема.
V=S·h
h=V:S
h=240:40=6cм
Площадь боковой поверхности равна произведению высоты на периметр основания:
Sбок=h·2(a+b)
Sбок=6·2·(8+5)=156 см²
Площадь полной поверхности параллелепипеда равна сумме площадей двух его оснований и боковой поверхности:
Sполн= 2·Sосн +Sбок
Sполн=80+156=236 см²
Диагональ можно найти с теоремы Пифагора ( см. рисунок)
Для этого нужно сначала вычислить диагональ основания АС.
Диагональ АС1 параллелепипеда равна
АС1=√(АС²+С1С²)
Можно воспользоваться теоремой:
Квадрат диагонали параллепипеда равен сумме квадратов трех его линейных измерений.
АС1²=АВ²+ВС²+С1С²=8²+5²+6²=125
АС1=√125=5√5 см
-----------------------------------------
№2
Объем прямоугольного параллелепипеда равен произведению высоты на площадь его основания или произведению трех его измерений. Что одно и то же.
V=a·b·c
Об основании известно, что его периметр Р равен 40 см.
Р=2(а+b)
Ни а, ни b не известны, но их длину можно найти.
Пусть ширина основания а, тогда его длина ( по условию) а+4
40=2·(а+а+4)=2а+2а+8=4а+8
4а=40-8=32 см
а=8 см
b=8+4=12 см
Высоту найдем из площади боковой поверхности, которая равна произведению высоты на периметр основания:
Sбок=hP
h=Sбок:Р
h=400:40=10 см
V=a·b·c=8·12·10=960 см³
Рассмотрим 4 случая:
1. Прямая MN пересекает ребро AB в точке P, а ребро CD в точке O (картинка 1).
Если прямая MN параллельна AD (рис. 1), то она параллельна и плоскости АА₁D₁. Секущая плоскость проходит через прямую MN, параллельную АА₁D₁, значит линия пересечения с этой гранью параллельна MN. Достаточно в грани АА₁D₁D провести прямую КТ, параллельную прямой AD, тогда КТ параллельна и MN.
КОРТ – искомое сечение.
Если прямая MN не параллельна AD (рис. 2 и 3)
KO - отрезок сечения.
MN∩AD = R
R и К лежат в плоскости одной грани. Проводим прямую КR.
KR пересекает прямую АA₁ в точке T.
Если эта точка лежит на ребре АА₁ (рис. 2), то KOPT - искомое сечение.
Если же нет, то прямая KR пересечет ребро A₁D₁ в точке Е, а прямая ТР ребро А₁В₁ в точке F. KOPFE – искомое сечение.
2. Прямая MN пересекает ребро AD в точке P и ребро CD в точке O (картинка 2).
Точки К, Р и О попарно лежат в одних и тех же гранях. Просто соединяем их.
КРО - искомое сечение.
3. Прямая MN пересекает ребро AB в точке P и ребро BC в точке O (картинка 3).
PO∩CD = L,
PO∩AD = H
Точки К и Н лежат в плоскости передней грани. Прямая НК пересекает ребро АА₁ в точке Т
Точки К и L лежат в плоскости боковой грани. Прямая KL пересекает ребро СС₁ в точке R.
KROPT - искомое сечение.
4. Прямая MN пересекает ребро AD в точке O и ребро АВ в точке Р (картинка 4).
OP∩СD = Е,
OP∩ВС = F.
Точки E и К лежат в плоскости грани AA₁D₁D. Прямая EК пересекает ребро C₁D₁ в точке R и прямую CC₁ в точке Н.
Точки Н и F лежат в плоскости задней грани. Прямая HF пересекает прямую В₁С₁ в точке Т.
Если точка Т лежит на ребре В₁С₁, то прямая HF пересечет и ребро ВВ₁ в точке L (рис. 1)
и тогда KOPLTR - искомое сечение.
Если точка Т не лежит на ребре В₁С₁ (рис. 2), то надо провести прямую TR в верхней грани, которая пересечет ребро А₁В₁ в точке L.
KOPLR- искомое сечение в этом случае.