Окружность разделена точками А,В,С и D на отрезки (дуги) с градусной величиной 60°, 80°, 100° и 120° , то есть дуга АВ = 60°, ВС = 80°, CD = 100° и DA=120°. (так как 3+4+5+6=18, 360°/18=20°, ну и 20*3=60° и так далее...)
Углы, вписанные в окружность, опирающиеся на соответствующие дуги, равны половине их градусной величины.
Значит угол ВСD = (BA+AD)/2 = 180°/2=90°
угол АВС = (AD+DC)/2 = 220°/2=110°. Тогда угол МСВ = 90°(как смежный с 90°) а угол МВС = 70° (как смежный с 110°) (точка М - точка пересечения прямых АВ и CD) Тогда искомый угол ВМС = 180°-90°-70° =20°. (так как в треугольнике сумма углов = 180°)
ответ 20°
1) Через две точки можно провести только одну прямую (аксиома).
При расположении точек важно, чтобы ни одни три не располагались на одной прямой.
Как вариант построения:
Наложите два треугольника один на другой так, чтобы они не имели общих вершин и их стороны пересекались. Вершины треугольников можно попарно соединять в разных комбинациях (см. рисунок в приложении)
2) Через любые две точки проходит одна и только одна прямая. (Аксиома).
Пересекающиеся прямые имеют только одну общую точку. В противном случае , если бы они имели две общие точки, то через эти точки проходили бы две различные прямые, что противоречит аксиоме.
Отсюда следуют варианты:
а) все четыре прямые пересекают данную в одной точке.
б) прямые пересекают её в двух точках ( по две в каждой)
в) в трёх точках ( две из них пересекают прямую в одной точке)
г) в четырех точках -каждая прямая пересекает данную в отдельной точке.
При пересечении четырех прямых с данной может образоваться от одной до четырех точек пересечения.