Сумма углов треугольника равна 180 градусов! Если один угол по условиям задачи равен 45 гр., а второй 90 гр., то третий соответственно будет равен 45 гр. Из этого следует, что треугольник является равнобедренным, т.к. два угла оказались равны, а ещё он является прямоугольным, т. к. один из углов равен 90 гр. Итак мы имеем равнобедренный, прямоугольный треугольник. Большая сторона равна 20 см. и является гипотенузой, т.к. она большая. Теперь применяем теорему Пифагора, которая гласит, что квадрат гипотенузы равен сумме квадратов катетов. А катеты, т.е. искомые стороны у нас равны, т.к. треугольник равнобедренный. Исходя из всего этого получаем уравнение: икс в квадрате плюс икс в квадрате равно 400 ( двадцать в квадрате ). Находим икс, который оказывается равен десять корней .
Дано: ABCA1B1C1 - правильная треугольная призvf AB=8см AA1=6см Найти S сеч. -? Решение: 1)Построим сечение: (B1C1 - (это сторона верхнего основания), А - ( это противолежащая вершина)) Проводим B1A в (AA1B1B) Проводим АС1 в (АА1С1С) В1С1А - искомое сечение, равнобедренный треугольник, т.к B1A =АС1 2)по теореме Пифагора из треугольника AA1B1 - прямоугольного: B1A^2 = AA1^2+A1B1^2 отсюда: B1A^2= 36+64=100 B1A=10 3) по формуле: S=√p(p-a)(p-b)(p-c) S=√14*4*4*6=8√21 ответ:8√21 или можно найти высоту АН сечения, она равна 2√21 и потом находим S=a*h/2 S=8*2√21/2=8√21
ЕАВС - пирамида, ∠С=90°, ∠В=15°. Так как боковые рёбра наклонены к плоскости основания пирамиды под одним градусом, то основание высоты пирамиды лежит в точке описанной около основания окружности. Так как треугольник АВС прямоугольный, то центр описанной окружности лежит посередине гипотенузы. АМ=ВМ=СМ. Пусть АМ=х, тогда АВ=2х. В тр-ке ЕСМ ЕМ=СМ·tg60=х√3.
Центр шара, описанного около пирамиды, лежит на прямой ЕМ так как только точки этой прямой равноудалены от вершин тр-ка АВС. Поскольку СМ<ЕМ, то центр описанной окружности лежит между точками Е и М. Обозначим его точкой О. АО=ВО=СО=ЕО=6 см. Пусть МО=у. В тр-ке СМО СО²=СМ²+МО²=х²+у²=6². ЕО=ЕМ-МО=х√3-у=6 ⇒ у=х√3-6, подставим это в первое уравнение: х²+(х√3-6)²=36, х²+3х²-12х√3+36=36, 4х²-12х√3=0, 4х(х-3√3)=0, х₁=0, х-3√3=0, х₂=3√3. В тр-ке АВС АМ=ВМ=СМ=3√3 см. ВС=АВ·cos15. Площадь тр-ка АВС: S=(1/2)АВ·ВС·sin15=(1/2)AB²·sin15·cos15=(AB²·sin30)/4. S=(6√3)²/8=27/2 см². Высота пирамиды: Н=ЕМ=х√3=3√3·√3=9 см. Объём пирамиды: V=SH/3=27·9/6=40.5 см³ - это ответ.
Исходя из всего этого получаем уравнение: икс в квадрате плюс икс в квадрате равно 400 ( двадцать в квадрате ). Находим икс, который оказывается равен десять корней .