Если все боковые ребра пирамиды равны, то вершина пирамиды проецируется в центр окружности описанной около основания. В основании прямоугольный треуг-к, значит центр окружности является серединой гипотенузы. Рассмотрим основание пирамиды треуг-к АВС. По т. Пифагора
АВ^2=BC^2+AC^2
АВ^2=6^2+8^2 = 36+64=100
AB=10
AO=10:2=5 (cм) - радиус описанной окружности.
SO - высота пирамиды. S - вершина пирамиды.
Рассмотрим треуг-к АОВ. Угол О=90
По т. Пифагора
SВ^2=ОB^2+SО^2
SО^2=SВ^2-ОB^2
SО^2=13^2-5^2 = 169-25=144
SО=12(см)
ответ:12(см)
Обозначим пирамиду АВСК. К вершина. Двугранный угол образованный гранями и основанием пирамиды определяется перпендикулярами к ребру. Из вершины К опустим перпендикуляр к основанию КО=H -высота пирамиды. О -центр вписанной окружности. Радиус этой окружности находится по формуле R=корень из (р-а)(р-в)(р-с)/р. Где р=(а+в+с)/2-полупериметр. р=(10+10+12)/2=16. R=корень из((16-10)(16-10)(16-12)/16)=3. Проведём перпендикуляры ОД и КД к АС . Угол КДО=45 по условию. Треугольник КДО прямоугольный , значит и угол ДКО=45. Следовательно ОД=ОК=R=3. Высота боковой грани КД=h=корень из(ОДквадрат +ОК квадрат)=корень из(9+9)=3корня из2. Она одинакова для всех боковых граней. Тогда площадь боковой поверхности равна S=1/2*h(а+в+с)= 1/2*(3 корня из 2)*(10+10+12)=48 корней из 2.