площадь трапеции равна произведению полусуммы ее оснований на высоту:
s = ((ad + bc) / 2) · bh,
где высота трапеции — это перпендикуляр, проведенный из любой точки одного из оснований к прямой, содержащей другое основание.
доказательство.

рассмотрим трапецию abcd с основаниями ad и bc, высотой bh и площадью s.
докажем, что s = ((ad + bc) / 2) · bh.
диагональ bd разделяет трапецию на два треугольника abd и bcd, поэтому s = sabd + sbcd. примем отрезки ad и bh за основание и высоту треугольника abd, а отрезки bcи dh1 за основание и высоту треугольника bcd. тогда
sabc = ad · bh / 2, sbcd = bc · dh1.
так как dh1 = bh, то sbcd = bc · bh / 2.
таким образом,
s = ad · bh / 2 + bc · bh = ((ad + bc) / 2) · bh.это можно только с доказательством
№1 Площадь параллелограмма равна произведение основания на высоту. Нам дана площадь и сторона параллелограмма, значит высота равна 187/17=11 см №2 Высота = 18/3=6 см Формула площади: половина произведения основания на высоту, значит площадь равна 1/2 *18*6=54 см №3 Высота = 1/2 * (4+12)=8 см Форумла площади трапеции: произведение полусуммы оснований на высоту, значит площадь равна 1/2 (4+12) * 8 =64 см №4 Острый угол параллелограмма равен 180-150=30 градусов (т.к. односторонний при параллельных прямых). Проведем высоту, получился прямоугольных треугольник с гипотенузой 4 см и острым углом в 30 гарудсов, значит по свойству прямоугольного треугольника высота равна 1/2 * 4=2 см. Площадь равна 7*2=14см №5 Обозначим одну часть за х. Тогда 3х+5х=8, значит х=1. значит диагонали ромба равны 3см и 5 см Формула площадь : половина произведения диагоналей Найдем площадь 1/2 * 3 * 5 = 7,5 см
площадь трапеции
площадь трапеции равна произведению полусуммы ее оснований на высоту:
s = ((ad + bc) / 2) · bh,
где высота трапеции — это перпендикуляр, проведенный из любой точки одного из оснований к прямой, содержащей другое основание.
доказательство.

рассмотрим трапецию abcd с основаниями ad и bc, высотой bh и площадью s.
докажем, что s = ((ad + bc) / 2) · bh.
диагональ bd разделяет трапецию на два треугольника abd и bcd, поэтому s = sabd + sbcd. примем отрезки ad и bh за основание и высоту треугольника abd, а отрезки bcи dh1 за основание и высоту треугольника bcd. тогда
sabc = ad · bh / 2, sbcd = bc · dh1.
так как dh1 = bh, то sbcd = bc · bh / 2.
таким образом,
s = ad · bh / 2 + bc · bh = ((ad + bc) / 2) · bh.это можно только с доказательством