Биссектриса равностороннего треугольника является медианой и высотой. Обозначим сторону треугольника буквой х.
Биссектриса равностороннего треугольника разбивает его на два равных прямоугольных треугольника, гипотенуза треугольника равна х, биссектриса является одним катетом, длина второго катета равна х/2.
Все ребра треугольной призмы равны. Найдите площадь основания призмы, если площадь ее полной поверхности равна 8+16√ 3
Полная площадь призмы равна сумме площадей двух оснований и площади боковой поверхности. Пусть ребро призмы равно а. Грани - квадраты, их 3. S бок=3а² S двух осн.=( 2 а²√3):4=( а²√3):2 По условию 3а²+(а²√3):2=8+16√3 Умножим обе стороны уравнения на 2 и вынесем а² за скобки: а²(6+√3)=16+32√3)=16(1+2√3) а²=16(1+2√3):(6+√3) Подставим значение а² в формулу площади правильного треугольника: S=[16*(1+2√3):(6+√3)]*√3:4 S=4(√3+6):(6+√3)=4 (ед. площади)
Думаю, решение понятно. Перенести решение на листок для Вас не составит труда.
Биссектриса равностороннего треугольника является медианой и высотой. Обозначим сторону треугольника буквой х.
Биссектриса равностороннего треугольника разбивает его на два равных прямоугольных треугольника, гипотенуза треугольника равна х, биссектриса является одним катетом, длина второго катета равна х/2.
По теореме Пифагора: х² = (x/2)² + (12√3)².
х² = x²/4 + 144 * 3.
х² - x²/4 = 432.
(4х²)/4 - x²/4 = 432.
(3х²)/4 = 432.
3х² = 432 * 4;
3х² = 1728;
х² = 1728/3 = 576.
х = √576 = 24.
ответ: сторона треугольника равна 24.
Объяснение: