Два круга, центры которых расположены по разные стороны от некоторой прямой, соприкасаются с этой прямой. Найти расстояние между центрами окружностей, если отрезок, соединяющий центры окружностей, пересекает данную прямую под углом 30°, а радиусы кругов равны 8 см и 6 см
Объяснение:
Введем обозначения , как показано на чертеже. Расстояние между центрами это отрезок АВ. Он равен АР+ВР
1) ΔАКР-прямоугольный по свойству касательной и радиуса , проведенного в точку касания . Угол ∠АРК=30° , значит гипотенуза АР=2*8=16 (см).
2) ΔВМР-прямоугольный по свойству касательной и радиуса , проведенного в точку касания . Угол ∠ВРМ=30° , значит гипотенуза ВР=2*6=12 (см).
Пусть ABC' — произвольный треугольник. Проведем через вершину B прямую, параллельную прямой AC. Отметим на ней точку D так, чтобы точки A и D лежали по разные стороны прямой BC.Углы DBC и ACB равны как внутренние накрест лежащие, образованные секущей BC с параллельными прямыми AC и BD. Поэтому сумма углов треугольника при вершинах B и С равна углу ABD.Сумма всех трех углов треугольника равна сумме углов ABD и BAC. Так как эти углы внутренние односторонние для параллельных AC и BD при секущей AB, то их сумма равна 180°. Теорема доказана.
Два круга, центры которых расположены по разные стороны от некоторой прямой, соприкасаются с этой прямой. Найти расстояние между центрами окружностей, если отрезок, соединяющий центры окружностей, пересекает данную прямую под углом 30°, а радиусы кругов равны 8 см и 6 см
Объяснение:
Введем обозначения , как показано на чертеже. Расстояние между центрами это отрезок АВ. Он равен АР+ВР
1) ΔАКР-прямоугольный по свойству касательной и радиуса , проведенного в точку касания . Угол ∠АРК=30° , значит гипотенуза АР=2*8=16 (см).
2) ΔВМР-прямоугольный по свойству касательной и радиуса , проведенного в точку касания . Угол ∠ВРМ=30° , значит гипотенуза ВР=2*6=12 (см).
3) АВ=16+12=28(см) .
====================
Свойство " Радиус , проведенный в точку касания , перпендикулярен касательной.