Дано:
ΔABC
∠C=90°
∠ABD=120°
CB+AB=21 см
Найти AB
Объяснение:
сначала найдем ∠B, так как ∠ABD смежный с ним⇒
∠B=180°-120°=60°
Теперь найдем ∠A
Сумма острых углов в прямоугольном треугольнике равна 90° ⇒
∠A=90°-60°=30°
По свойству напротив угла в 30° в прямоугольном треугольнике лежит катет равный половине гипотенузы ⇒
AB+AC=21⇒
Пусть AB-x, значит CB=0.5*x (так как при умножении любого числа на 0,5 в ответе будет его половина)
По условию задачи составим уравнение
x+0.5x=21
1.5x=21
x=21/1.5
x=14 см
(а CB=7см)⇒AB=14см
ответ:14см
ABCD - прямоугольник.
AE ┴ ABCD.
ED = √7
EC = √8
EB = √6
Найти:АЕ - ?
Решение:Так как AD ┴ DC, AE ┴ABCD => ED ┴DC, по теореме о 3 перпендикулярах => △EDC - прямоугольный.
Найдём DC, по теореме Пифагора: (с = √(a² + b²), где с - гипотенуза; а, b - катеты).
DC = √(EC² - ED²) = √((√8)² - (√7)²) = √(8 - 7) = 1
У прямоугольника противоположные равны.
=> DC = AB = 1
Найдём АЕ, по теореме Пифагора: (с = √(a² + b²), где с - гипотенуза; а, b - катеты).
АЕ = √(EB² - AB²) = √((√6)² - 1²) = √(6 - 1) = √5.
Найдём АD, по теореме Пифагора: (с = √(a² + b²), где с - гипотенуза; а, b - катеты)
AD = √(ED² - AE²) = √((√7)² - (√5)²) = √(7 - 5) = √2
AD = BC = √2 (у прямоугольника противоположные стороны равны)
S осн = S прямоугольника = a * b = AD * DC = AB * BC.
S прямоугольника = 1 * √2 = √2 ед.кв.
ответ: √2 ед.кв; √5 ед.изм.