Вариант решения В параллелограмме две пары равных сторон. Пусть каждая сторона одной пары рвана х, тогда каждая сторона другой пары равна х+4 Сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон. D²+d²=2a²+2b² Запишем уравнение по данным в условии значениям: 14²+12²=2х²+ 2(х+4)² 196+144=2х²+2х²+16х+32 4х²+16х-308=0 Для удобства вычисления разделим обе стороны на 4 и решим квадратное уравнение: х²+4х-77=0 D=b²-4ac=4²-4·(-77)=324 х₁=(-4+√324):2=7см х₂=(-4-√324):2=-11 ( не подходит) Стороны одной пары равны по 7 см Стороны другой пары равны по 11 см каждая Р=2*(7+11)=36см
1.Найти радианную меру угла, если его градусная мера равна- 10°, 30°, 150°.
радианная - z
градусная - g
g/180 = z/π
z = g·π/180
z₁ = 10*π/180 = π/18
z₂ = 30*π/180 = π/6
z₃ = 150*π/180 = 5π/6
2. Найти градусную меру угла, если его радианная мера равна: п/5, 2п/3, 7п/6.
g = 180*z/π
g₁ = 180/5 = 36°
g₂ = 180*2/3 = 120°
g₃ = 180*7/6 = 210°
3.Найти длину дуги окружности, радиуса 2см, отвечающей центральному углу 60°.
l = π·r·g/180
l = π*2*60/180 = 2π/3 ≈ 2,094 см
Вариант II
1.Найти радианную меру угла, если его градусная мера равна- 20°, 50°, 160°.
z₁ = 20*π/180 = π/9
z₂ = 50*π/180 = 5π/18
z₃ = 160*π/180 = 8π/9
2. Найти градусную меру угла, если его радианная мера равна: п/8, 3п/2, 5п/4.
g₁ = 180/8 = 22,5°
g₂ = 180*3/2 = 270°
g₃ = 180*5/4 = 225°
3.Найти длину дуги окружности, радиуса 3см, отвечающей центральному углу 80°.
l = π·r·g/180
l = π*3*80/180 = 4π/3 ≈ 4,189 cм