А(- 1; 6), В(- 1; - 2)
Найдем длину диаметра по формуле расстояния между точками:
АВ = √((x₁ - x₂)² + (y₁ - y₂)²) = √((- 1 + 1)² + (6 + 2)²) = √(0 + 64) = 8.
Тогда радиус равен:
R = AB/2 = 4
Координаты центра найдем как координаты середины отрезка АВ:
x₀ = (x₁ + x₂)/2, y₀ = (y₁ + y₂)/2
x₀ = (- 1 - 1)/2 = - 1, y₀ = (6 - 2)/2 = 2
О(- 1; 2)
Уравнение окружности:
(x - x₀)² + (y - y₀)² = R²
(x + 1)² + (y - 2)² = 16
Уравнение прямой, проходящей через центр окружности и параллельной оси Ох:
у = 2.
Уравнение прямой, проходящей через центр окружности и параллельной оси Оу:
х = - 1.
Объяснение:
При симметрии относительно плоскости ОХУ координаты х и у точки не изменятся, а координата z поменяет знак на противоположный, так как симметричная точка будет находиться на таком же расстоянии от плоскости ОХУ, но с другой стороны.
Тогда центр сферы, точка с координатами (4; –2; 1) перейдёт в точку с координатами (4; –2; –1).
Уравнение сферы: (х – а)² + (у – b)² + (z – c)² = R²
(a; b; c) – координаты центра сферы, R – радиус сферы.
Тогда уравнение сферы с центром в точке с координатами (4; –2; –1) и радиусом 3 см примет вид:
(х – 4)² + (у + 2)² + (z + 1)² = 3²
(х – 4)² + (у + 2)² + (z + 1)² = 9
Найдём объём шара:
V = 4/3∙πR³
V = 4/3∙π·3³ = 4∙π·9 = 36π