Углы каждой пары равны между собой (каквертикальные):
∠1=∠4, ∠2=∠5, ∠3=∠6.
Внешний угол треугольника равен сумме двух внутренних углов, несмежных с ним.
Поэтому ∠1=∠А+∠С, ∠2=∠А+∠В, ∠3=∠В+∠С.
Отсюда сумма внешних углов треугольника, взятых по одному при каждой вершине, равна
∠1+∠2+∠3=∠А+∠С+∠А+∠В+∠В+∠С=2(∠А+∠В+∠С).
Так как сумма углов треугольника равна 180º, то ∠А+∠В+∠С=180º. Значит, ∠1+∠2+∠3=2∙180º=360º.
Когда задают вопрос: «Чему равна сумма внешних углов треугольника?», чаще всего имеют в виду именно сумму углов, взятых по одному при каждой вершине. Поэтому следует уточнить формулировку — нужно найти сумму углов, взятых по одному при каждой вершине или сумму всех внешних углов. Сумма всех шести внешних углов, соответственно, в два раза больше: ∠1+∠2+∠3+∠4+∠5+∠6=2(∠1+∠2+∠3)=720º.
Углы каждой пары равны между собой (каквертикальные):
∠1=∠4, ∠2=∠5, ∠3=∠6.
Внешний угол треугольника равен сумме двух внутренних углов, несмежных с ним.
Поэтому ∠1=∠А+∠С, ∠2=∠А+∠В, ∠3=∠В+∠С.
Отсюда сумма внешних углов треугольника, взятых по одному при каждой вершине, равна
∠1+∠2+∠3=∠А+∠С+∠А+∠В+∠В+∠С=2(∠А+∠В+∠С).
Так как сумма углов треугольника равна 180º, то ∠А+∠В+∠С=180º. Значит, ∠1+∠2+∠3=2∙180º=360º.
Когда задают вопрос: «Чему равна сумма внешних углов треугольника?», чаще всего имеют в виду именно сумму углов, взятых по одному при каждой вершине. Поэтому следует уточнить формулировку — нужно найти сумму углов, взятых по одному при каждой вершине или сумму всех внешних углов. Сумма всех шести внешних углов, соответственно, в два раза больше: ∠1+∠2+∠3+∠4+∠5+∠6=2(∠1+∠2+∠3)=720º.
cos(ABC)>0 => △ABC - остроугольный
Отрезок AC виден из точек P и K под прямым углом
=> APKC - вписанный => ∠BPK=∠BCA => PK антипараллельна AC
Аналогично KM и MP.
(Доказали: стороны остроугольного треугольника антипараллельны сторонам ортотреугольника.)
=> △ABC~△KBP~△AMP~△KMC
cos(ABC) =BP/BC =6/10 =3/5
BP=3x, BC=5x, AP=2x
CP=√(BC^2-BP^2)=4x
AC=√(AP^2+CP^2)=√(4+16)x =2√5x
BM - высота и медиана, AM=AC/2=√5x
Площади подобных фигур относятся как квадрат коэффициента подобия.
S(KBP)/S(ABC) =(BP/AB)^2 =(3/5)^2 =9/25
S(AMP)/S(ABC) =(AM/AB)^2 =(√5/5)^2 =5/25
Понятно, что △AMP=△KMC
S(KMP) =S(ABC)-S(KBP)-2(AMP) =(25-9-10)/25 S(ABC) =6/25 S(ABC) =12
=> S(ABC) =12*25/6 =50