Даны точки a b c d и ab параллельно cd. плоскость проходящая через точки b и c пересекает отрезок ad в точке e. найдите bc и ad если ab=8 cd=6 de=3 и be=6
Через две параллельные прямые можно провести плоскость и при том только одну. Таким образом, точки A, B, C и D лежат в одной плоскости. Плоскость, проходящая через точки B и C, пересекает плоскость ABCD по прямой BC и точка E, принадлежащая отрезку AD, также лежит в плоскости ABCD. Треугольники CDE и ВАЕ, лежащие в одной плоскости, подобны по двум углам, так как АВ параллельна CD (дано) и <CDA=<BAD, как накрест лежащие при параллельных АВ и CD и секущей AD, а <AEB=<CED, как вертикальные.
См. рисунок в приложении. Прямой параллелепипед, значит в основании параллелограмм со сторонами а и b, боковые ребра H перпендикулярны плоскости основания. Острый угол параллелограмма обозначим α.
Большая диагональ параллелограмма является проекцией большей диагонали параллелепипеда (на рисунке изображена синим цветом).
По теореме косинусов большая диагональ параллелограмма d²=a²+b²-2·a·b·cos(180°-α) d²=3²+5²-2·3·5·cos120° d²=9+25-2·3·5·(-1/2) d²=9+25+15=49 d=7 см
По теореме Пифагора Н²=10²-7²=100-49=51 Н=√51 см
S(полн.)=S(бок.)+2S(осн.)=Р(осн.)·Н+2·a·b·sinα=2·(a+b)·H+2·a·b·sinα= =2·(3+5)·√51+2·3·5·(√3/2)=(16√51+15√3) кв. см.
См. рисунок в приложении. Прямой параллелепипед, значит в основании параллелограмм со сторонами а и b, боковые ребра H перпендикулярны плоскости основания. Острый угол параллелограмма обозначим α.
Большая диагональ параллелограмма является проекцией большей диагонали параллелепипеда (на рисунке изображена синим цветом).
По теореме косинусов большая диагональ параллелограмма d²=a²+b²-2·a·b·cos(180°-α) d²=3²+5²-2·3·5·cos120° d²=9+25-2·3·5·(-1/2) d²=9+25+15=49 d=7 см
По теореме Пифагора Н²=10²-7²=100-49=51 Н=√51 см
S(полн.)=S(бок.)+2S(осн.)=Р(осн.)·Н+2·a·b·sinα=2·(a+b)·H+2·a·b·sinα= =2·(3+5)·√51+2·3·5·(√3/2)=(16√51+15√3) кв. см.
Через две параллельные прямые можно провести плоскость и при том только одну. Таким образом, точки A, B, C и D лежат в одной плоскости. Плоскость, проходящая через точки B и C, пересекает плоскость ABCD по прямой BC и точка E, принадлежащая отрезку AD, также лежит в плоскости ABCD. Треугольники CDE и ВАЕ, лежащие в одной плоскости, подобны по двум углам, так как АВ параллельна CD (дано) и <CDA=<BAD, как накрест лежащие при параллельных АВ и CD и секущей AD, а <AEB=<CED, как вертикальные.
Коэффициент подобия треугольников равен CD/AB = 6/8 = 3/4.
Тогда СЕ/ВЕ=3/4 => CE = 6*3/4 =4,5.
ED/AE=3/4 => AE=3*4/3 = 4.
AD=AE+ED = 7 ед.
BC=BE+CE = 10,5 ед.