1) в равностороннем треугольнике все высоты равны.
Верно.Это свойство высот равностороннего треугольника
2)точка пересечения медиан произвольного треугольника - это центр окружности, описанной около этого треугольника.
Неверно. Центром описанной около треугольника окружности является точка пересечения серединных перпендикуляров к сторонам треугольника
4)медиана, это отрезок соеденяющий середины двух сторон треугольника.
Неверно. Медиана - отрезок, соединяющий вершину треугольника с серединой противоположной стороны
5) треугольник со сторонами 6,8,9- не существует.
Неверно. Существует.
Треугольник существует только тогда, когда сумма любых двух его сторон больше третьей.
Проверим:
6+8>9, 14>9
8+9>6, 17>6
6+9>8, 15>8
6) треугольник со сторонами 3,4,5 -прямоугольный.
Верно. Он египетский.
Египетский треугольник - прямоугольный треугольник с соотношением сторон 3:4:5
ответ 1 и 6
Угол равен 90°
Объяснение:
Определение: Углом между двумя скрещивающимися прямыми называется угол между двумя пересекающимися прямыми, соответственно параллельными данным скрещивающимся прямым".
Прямая А1С принадлежит плоскости диагонального сечения куба. Прямая B1D1 принадлежит плоскости верхнего основания куба. Эти плоскости взаимно перпендикулярны. Значит, если мы проведем прямую параллельную А1С в плоскости, содержащей плоскость диагонального сечения АА1С1С так, что эта прямая будет пересекаться с прямой B1D1, то угол между ними будет равен 90 градусов.
Или координатным методом: привяжем к вершине В куба прямоугольную систему координат.
Примем сторону куба равной 1.Тогда имеем точки:
А1(0;1;1), С(1;0;0), B1(0;0;1), D1(1;1;1) и соответственно векторы:
А1С{1;-1;-1} и B1D1{1;1;0}. Угол между векторами определяется по его косинусу, который равен скалярному произведению этих векторов, деленному на произведение их модулей.
Скалярное произведение векторов А1С и B1D1 равно сумме произведений соответствующих координат, то есть:
1·1 + (-1)·1 + (-1)·0 = 0. Этого нам достаточно, так как если скалярнле произведение векторов равно нулю, эти вектора перпендикулярны друг другу.