1. ABCD - осевое сечение цилиндра - прямоугольник.
Н = АВ = 6 см - высота цилиндра,
ВС = Sabcd/AB = 48/6 = 8см
ВС = 2R, R = BC/2 = 4 см - радиус основания цилиндра.
Sпов.ц. = 2πR(R + H) = 2π·4(4 + 6) = 80π см²
2. ABCD - осевое сечение цилиндра - прямоугольник.
Из треугольника АВС:
AB = AC·cos60° = 12 · 0,5 = 6 см
Н = АВ = 6 см
BC = AC·sin60° = 12 · √3/2 = 6√3 см
R = BC/2 = 3√3 см
Sбок = 2πRH = 2π · 3√3 · 6 = 36√3π см²
3. ASB - осевое сечение конуса, SO - высота конуса.
ΔASO: ∠AOS = 90°, ∠ASO = 45°, ⇒ ∠SOA = 45°, ⇒
AO = OS = AS/√2 = 10/√2 = 5√2 м
AB = 2AO = 10√2 м
Sasb = AB·SO/2 = 10√2 · 5√2 / 2 = 50 м²
4. На рисунке - осевое сечение конуса.
ΔАВО прямоугольный, ∠АВО = 30°, ⇒
R = AO = AB/2 = 8 см
Sполн = πR² + πRl = 64π + 128π = 192π см²
5. ΔABC - осевое сечение конуса, равносторонний треугольник.
h = a√3/2, где а - сторона треугольника, h - его высота
h = √3, ⇒ a = 2 см
R = a/2 = 1 см
1) Площадь трапеции равна полусумме произведения ее оснований на высоту.
В трапеции АВСD найдем высоту ВМ
В треугольнике АВМ :
ВМ - катет и высота
АВ=25см - гипотенуза
АМ=(АD-BC):2 - катет
АМ=(24-10):2=7(см)
BM^2=АВ^2-АМ^2
BM =корень из (25*25-7*7)=24(см)
S=(24+10):2*24=408(см2)
S=408см2 - площадь трапеции
2) Средняя линия трапеции равна полусумме ее оснований
В трапеции АВСD
(ВC+AD)=11*2=22(см)
АD=2+4+7=13(частей)
ВС=4части
13+4=17(частей) - составляют 22см
22:17=1,3(см) - 1 часть
АD=1,3 * 13 = 16,9(см)
ВС=1,3*4=5,2(см)
3) Диагонали ромба пересекаются под прямым углом
АВСD - ромб
О - точка пересечения диагоналей
Рассмотрим треугольник АОВ, он прямоугольный
В треугольнике АОВ:
<АОВ=90град.
180-90=90град. - сумма (<AВО + <BАО)
7+8=15 - частей сумма (<AВО + <ВАО), что составляет 90 градусов
90:15=6(град) - 1 часть
<BAO=6*7=42 град.
<A=42*2=84 град.
<ABO=90-42=48 град.
<B=48*2=96 град.
ответ: углы ромба 84 и 96 градусов.