1) Сторона треугольника, лежащая против прямого угла называется гипотенузой
2) Сторона треугольника, прилежащая к прямому углу называется катетом
3) Признаков равенства прямоугольных треугольников - 3
4) Катет прямоугольного треугольника, лежащий против угла в 30° равен половине гипотенузе
5) 3. Признак равенства прямоугольных треугольников по двум катетам
6) 2. Признак равенства прямоугольных треугольников по гипотенузе и катету
7) 4. Признак равенства прямоугольных треугольников по катету и острому углу
8) 1. Признак равенства прямоугольных треугольников по гипотенузе и острому углу
Проведем по линейке прямую линию и отложим на ней циркуля одну из сторон треугольника – например в 8 см(AB). Концы этого отрезка обозначим буквами и jстается найти такую третью точку, которая удалена от A на 7 см и от B на 9 см (или наоборот): это и будет третья вершина(C) треугольника со сторонами 7 см, 8 см и 9 см. Чтобы эту точку разыскать, раздвигают сначала концы циркуля на 7 см и описывают окружность вокруг точки как около центра. Все точки этой окружности отстоят от на 7 см; среди них нужно найти ту, которая отстоит от вершины на 9 см. Для этого вокруг как около центра, описывают окружность радиусом 9 см. Где обе окружности пересекаются, там лежат точки, удаленные от на 7 см и от на 9 см . Наши окружности пересекутся в двух точках и Соединив их в точке C и получим два треугольника и имеющие стороны в 8 см, в 7 см и в 9 см.
Свойства подобия издавна широко использовались на практике при составлении планов, карт, при выполнении архитектурных чертежей и чертежей различных деталей машин и механизмов
Объяснение:
С подобия треугольников можно выполнять измерения реальных объектов. Методы исследования: поиск, анализ, математическое моделирование. ... В жизни мы встречаемся не только с равными фигурами, но и с такими, которые имеют одинаковую форму, но разные размеры.