Так как в параллелограмме противолежащие стороны попарно параллельны и равны, то в параллелограмме MKPT MK=PT и KP=MT
Так как KP=MT, то диагональ MP является секущей, которая пересекает две параллельные прямые, тогда:
∠PMT = ∠KPM как накрест лежащие углы.
Так как МР является бисектрисой ∠M, то:
∠KMP = ∠PMT
Таким образом у нас получается :
∠PMT = ∠KPM = ∠KMP
В △MKP ∠KPM = ∠KMP, таким образом △MKP равнобедренный, тогда: МК=КР=Х
Так как MK = PT, то PT = KP = x, а также KP = MT = x.
В паралекграмме МКРТ все стороны равны х. Его периметр тогда будет равнятся:
P = MK + KP + PT + MT = x + x + x + x = 4×х
Теперь решаем:
4×х=60
х=60÷4
х=15
ответ: каждая сторона параллеграмма равна 15 см
ответ:
объяснение:
1) 2*9=18- это две стороны по 9, 26-18=8/2=4-это другая сторона, s=9*4=36
2)s=a*a=169, a=13, p=13*4=52
3) s=a*b=96, 3*b=96, b=96/3=32, p=2(a+b)=2(3+32)=70
4)4a=164, a=164/4=41
6)a=x, b=6x, 2(x+6x)=70, 7x=35, x=5, 6x=6*5=30, a=5, b=30, s(пр)=5*30=150, s(кв)=150, (у равновеликих фигур площади равны),
s(кв)=a^2, a^2=150, a=v150=v(25*6)=5v6, p(кв)=4*5v6=20v6
7)s=a^2*v3/4=36*v3/4=9v3