Объяснение:
1
Угол Е = 180-120=60°( как смежные углы,сумма смежных углов 180°). сумма острых углов равна 90°
угол С= 90-60=30°. катет, который лежит напротив угла равного 30° равен 1/2 гипотезы. CD= 2*7=17 см
2
сумма острых углов прямоугольного треугольника 90°. Пусть один угол х, другой х+6
х+х+6=90
2х= 84
х= 42° первый угол
42+6=48° второй угол.
3
у ранобедренрог треугольника углы при основании равны.
Рассмотрим треугольники КАО и РВО. КА=РВ, КО=РО по условию. угол К=уголу Р. значит треугольники КАО и РВО равные по первому признаку ( двум сторонам и углу между ними). Отсюда следует что все соответствующие элементы равны. ОА=ОВ
I. Признак подобия треугольников по двум углам.
Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.
Так как острые углы равнобедренных прямоугольныхтреугольников равны 45º, то по этому признаку подобны:
5. любые два равнобедренных прямоугольных треугольника
.----------------
2.Треугольники АВС и AMN - равнобедренные. Периметр треугольника AMN равен 320 см, АВ=16 см, АМ=80 см. Найдите площадь треугольника АВС.
Задача не совсем корректна. Приходится по теме вопроса догадываться, что данные треугольники подобны.
В треугольнике АМN сторона АМ=80. Из неравенства треугольников следует, что только АМ может быть основанием этого треугольника, и АN=МN=(320-80):2=120
Тогда
Вариант 1)
АВ=16- основание меньшего треугольника
k=АМ:АВ=80:16=5
ВС=АС=120:5=24
Высоту СН ∆ АВС найдем по т.Пифагора:
СН=√(ВС²-ВН²)=√512=16√2
Ѕ∆ АВС=ВН*СН=8*16√2=128√2 см² или ≈181,02 см²
Вариант 2)
АВ=16 - боковая сторона меньшего треугольника.
Тогда k=AM:BC=120:16=7,5
АС=80:7,5=32/3
Тогда СН=АС:2=16/3
Высота ВН=√(BC² -CH²)=√(9*256-256):9)=√(8*256:9)=√(2*4*256:3)=(32√2)/3
S ∆АВС=ВН*СН=(32√2)/3)*16/3
S ∆АВС=(32*16√2)/9 см² или ≈ 80,453 см²