Во-первых, сразу вычислю третий угол треугольника АВС. Это легко, ведь сумма углов треуголника всегда 180 градусов.
Итак: угол В = 180-22-28=130 (град).
Понятно теперь, что треугольник АВС тупоугольный и, значит, центр О описывающей его окружности не внутри треугольника, а вне его.
Стоит ли это объяснять? Ну, на всякий случай скажу, что это очевидно вот почему: гипотенуза прямоугольного треугольника всегда проходит через центр описывающей его окружности.Это точно проходят в школе!
(Теперь легко представить вот что:
- Если прямой угол такого (вписанного в круг) треугольника начать уменьшать, то центр кружности окажется внутри треугольника. Так со всеми остроугольными треуголниками получается.
- Если же прямой угол увеличивать, то центр кружности окажется за пределами треугольника. Это касается всех тупоугольних треуголников.)
Дальше же вот из чего буду исходить:
Известно, что "Любой угол, касающийся окружности, используя хорду как ограничение угла, равен половине угла в центре".
Т.е. если провести лучи из центра окружности (О) в точки пересечения хорды и этой окружности (в нашем случае это точки А и С), получится угол ровно в два раза больший, чем тот, лучи которого будут проходить через те же точки А и С, но исходить из точки, лежащей на окружности. Назовем ее D.
АОC=2ADC
Внимание! Это касается только случаев, когда точка D и центр окружности О лежат по одну сторону от хорды!
Это точно в школе проходят.
То есть, знай мы ADC - и ответ на задачку у нас в кармане!
В нашем случае нет пока точки D, но у нас есть точка В! И это прекрасная возможность поставить точку D так, что мы с легкостью вычислим угол ADC!!
Нет ничего проще: Порводим прямую ВО - она пересечет нашу окружность как раз там, где нам нужно. Это и будет необходимая D. (Назовем точку пересечения D.)
Соединим отрезками точки D и A, D и C.
Теперь посчитаем величину угла ADC. Для этого рассмотрим два получившихся треугольника DAC и DСВ и четырехуголник DABС.
Треугольники прямоугольные. (Мы это уже обсуждали в начале - ведь гипотенуза каждого из них проходит через центр описывающей их окружности)
Значит углы DAВ и DСВ прямые.
Получается, в четырехуголнике DAВС мы знаем три угла из четырех:
- углы А (DAВ) и С (DСВ ) прямые,
- угол В равен 130 градусов (мы это высчитали в самом начале, для треугольника АВС)
Ну, а что сумма углов выпуклого четырехугольника равна 360 градусов - это точно в школе проходят! (Да и сообразить легко - ведь такую фигуру всегда можно разбить диагональю на два треугольника. А в каждом треугольнике 180!)
значит АDС равен 360-90-90-130=50 градусов! (довольно забавно: этот угол, оказывается, равен сумме углов А и С треугольника АВС!)
Ну, и теперь только удвоить это число - и получим ответ:
Помните? АОC=2ADC
Т.е. угол АОС равен удвоенному АDС
АОС= 50х2= 100 градусов.
Итак все окаалось просто:
1) проводим прямую через В и О, точку пересечения ее с окружностью обозначаем D.
2) Определяем углы четырехугольника DABС
3) удваиваем величину угла АDС = это и есть искомая величина!
Ура!))
В плоскости CDK проведем прямую II CD, отложим на ней отрезок равный CD, и обозначим конец K1
KDCK1 - прямоугольник.
K1C перпендикулярно СD. Поскольку CD перпендикулярно МС, то KK1 перпендикулярно МК1 (эта прямая лежит в плоскости МСК1) Поэтому треугольник МК1К прямоугольный. И треугольник МСК1 тоже - К1СМ - плоский угол двугранного ула между 2 перпендикулярными плоскостями.
Отсюда
МК1^2 = CM^2+CK1^2;
KK1^2 = MK^2 - MK1^2; Собираем все это, получаем
СD^2 = 17^2 - 8^2 - 9^2 = 144 = 12^2;
CD = 12
Найти площадь треугольника, координаты вершин которого А(-1;-7), В(3;1) и С(4;-13).
Есть несколько вариантов решения.
1) Прямо по координатам вершин по формуле:
Пусть точки A1(x1; y1), A2(x2; y2), A3(x3; y3) - вершины треугольника, тогда его площадь выражается формулой:
1/2 |x1-x3 y1-y3|
|x2-x3 y2-y3|
В правой части стоит определитель второго порядка. Площадь треугольника всегда положительна.
Решение. Принимая A за первую вершину, находим:
x1-x3 y1-y3
x2-x3 y2-y3 =
-1 - 4 -7 - (-13)
3 - 4 1 - (-13) =
-5 6
-1 14 = -5*14 - (-1)*6 = -64
По формуле получаем:S = (1/2)*|-64| = 32 кв. ед.
2) вышеприведенное решение - основано на векторном произведении.
Площадь равна половине модуля векторного произведения векторов
АВ и АС.
Находим векторы.
АВ = (3-(-1); 1-(-7)) = (4; 8)
АС = (4-(-1); -13-(-7)) = (5; -6).
Находим их векторное произведение с применением схемы Саррюса.
i j k| i j
4 8 0| 4 8
5 -6 0| 5 -6 = 0i + 0j - 24k - 0j - 0i - 40k = 0i + 0j - 64k.
Модуль равен √(0² + 0² + (-64)²) = 64.
Тогда площадь S = (1/2)*64 = 32 кв. ед.
3) Можно применить формулу Герона, предварительно определив длины сторон.
Координаты векторов сторон
АВ (c) BC (a) AС (b)
x y x y x y
4 8 1 -14 5 -6
Длины сторон АВ (с) = 16 64 80 = 8,94427191
BC (а) = 1 196 197 = 14,03566885
AC (b) = 25 36 61 = 7,810249676
Полупериметр р = 15,39509522
Площадь по Герону 15,39509522 6,450823307 1,359426369 7,584845541 = 32.