1) Решение имеет 2 варианта: а) через синус известного угла найти высоту H треугольника, тогда S = (1/2)*Н*в. б) по теореме косинусов найти третью сторону треугольника, а площадь определить по формуле Герона. а) sin C = √(1-cos²C) = √(1-(6/7)²) = √(1-(36/49) = √(13/49) = √13/7 H = 14*√13/7 = 2√13 S = (1/2)*(2√13)*8 = 8√13 = 28.84441. б) с = √(а²+в²-2*а*в*cos C) = √(14²+8²-2*14*8*(6/7)) = √( 196 +64- 192) =√ 68 = = 8.246211. p = (14+8+ 8.246211)/2 = 15.12311 S = √(p(p-a)(p-b)(p-c)) = 28.84441.
2) АС = (5-0=5; -1-0=-1) АС(5; -1) СВ = (2-5=-3; 2-(-1)=3) СВ(-3; 3) Скалярное произведение АС*СВ = Х1*Х2+У1*У2 = 5*(-3)+(-1)*3 = -15-3 = -18. cos B = |(XBA*XBC+YBA*YBC)/(|AB|*|BC|)| = |(-2*3+-2*-3)/(2.8284*4.2426)| = = 0/12 = 0. В = arc cos 0 = 90 градусов - треугольник прямоугольный.
Если предположить, что равносторонний конус - это конус, у которого длина образующей равна диаметру основания, то ответ: Проведём осевое сечение конуса с вписанным в него шаром. Получим равносторонний треугольник с вписанной в него окружностью. При нахождении отношений длину образующей можно принять равной 1. Sk = So+Sбп So = πD²/4 = π*1²/4 = π/4 Sбп = πRL = π*(1/2)*1 = π/2 Sk = π4 + π/2 = 3π/4 Радиус шара равен 1/3 высоты треугольника в осевом сечении r = (1/3)Н = = (1/3)*scrt(1-(1/4)) = scrt3/6 = 1/2scrt3 Sш = 4πr² = 4π*(1/2scrt3)^2= 4π*1/12 = π*/3 Отсюда отношение площади полной поверхности конуса к площади поверхности шара равно (3π/4)/(π/3) = 9/4.
а) через синус известного угла найти высоту H треугольника,
тогда S = (1/2)*Н*в.
б) по теореме косинусов найти третью сторону треугольника, а площадь определить по формуле Герона.
а) sin C = √(1-cos²C) = √(1-(6/7)²) = √(1-(36/49) = √(13/49) = √13/7
H = 14*√13/7 = 2√13
S = (1/2)*(2√13)*8 = 8√13 = 28.84441.
б) с = √(а²+в²-2*а*в*cos C) = √(14²+8²-2*14*8*(6/7)) = √( 196 +64- 192) =√ 68 =
= 8.246211. p = (14+8+ 8.246211)/2 = 15.12311
S = √(p(p-a)(p-b)(p-c)) = 28.84441.
2) АС = (5-0=5; -1-0=-1) АС(5; -1)
СВ = (2-5=-3; 2-(-1)=3) СВ(-3; 3)
Скалярное произведение АС*СВ = Х1*Х2+У1*У2 = 5*(-3)+(-1)*3 = -15-3 = -18.
cos B = |(XBA*XBC+YBA*YBC)/(|AB|*|BC|)| = |(-2*3+-2*-3)/(2.8284*4.2426)| =
= 0/12 = 0. В = arc cos 0 = 90 градусов - треугольник прямоугольный.