усеченная пирамида АВСА1В1С1, АВС равносторонний треугольник со стороной=6, А1В1С1 равносторонний треугольник со стороной=2, проводим высоты ВН и В1Н1=медианам=биссектрисам, точки О и О1 - пересечение медиан - центры треугольников, ОО1-высота пирамиды,
ВН=АВ*√3/2=6√3/2=3√3, В1Н1=А1В1*√3/2=2√3/2=√3, при пересечении медианы делятся в отношении 2:1 начиная от вершины, ВО=2/3*ВН=2/3*3√3=2√3, В1О1=2/3В1Н1=2√3/3
в прямоугольной трапеции ОО1В1В из точки В1 проводим высоту В1К на ВО, ОО1В1К прямоугольник, ОК=В1О1=2√3/3, ОО1=В1К, ВК=ВО-ОК=2√3-2√3/3=4√3/3,
треугольник В1ВК прямоугольный, уголВ1ВК=60, В1К=ВК*tg60=4√3/3*√3=4=ОО1 - высота пирамиды
ABCD- равнобедрренная трапеция, BC и AD - основания трапеции, BD=10м - диагональ, ВК - высота, угол BDK=60 градусов. Рассм треугольник BKD - прямоугольн.т.к. BK перпендикулярно AD. sinBDK=BK/BD, BK=sin60*BD=(корень из 3)/2*10=5 корней из 3. По т. Пифагора BD^2=BK^+KD^2, KD^2=BD^-BK^, KD^=100-75=25. KD=5. По свойствам равнобедренной трапеции (Высота, опущенная из вершины на большее основание, делит его на два отрезка, один из которых равен полусумме оснований, другой - полуразности оснований.) KD=(BC+AD)/2=5. Тогда S=(BC+AD)/2*BK=5*5корней из 3=25 корней из3.