Построим к данной задаче рисунок. 1. Строим окружность с центром О. 2. Проведем диаметр в этой окружности ВС. 3. На окружности ставим точку А. 4. точку А соединим с Точками А и В. ΔАВС- прямоугольный, ∠ВАС - вписанный, опирается на диаметр. ∠ВАС=90°ю 5. С точки А опускаем перпендикуляр АD на диаметр ВС. 6. Проводим радиус АО. Теперь переходим к решению задачи. По условию длина окружности равна 2πR=52π: 2R=52; R=52/2=26 см. ΔАОВ - равнобедренный; ОВ=ОА=26 см. ΔАОD - прямоугольный, по теореме Пифагора ОD²=ОА²-АD²=26²-24²=100; ОD=√100=10 см. ВD=ОВ+ОD=26+10=36 см. СD= ОС+ОD=26-10=16 см. ответ: 16 см; 36 см.
Пусть сторона квадрата до увеличения - х, тогда после увеличения на 20% - 1,2х. Пусть площадь квадрата до увеличения - S, тогда после увеличения - S+11. Можно составить систему уравнений: х²=S (1,2x)²=S+11
х²=S 1,44x²=S+11
Вычтем из второго уравнения первое: 1,44x²-х²=S+11-S 0,44x²=11 x²=11/0,44=25 x1=-5 - не подходит по условию задачи, так как сторона квадрата не может быть отрицательной величиной х2=5 (дм) Итак, сторона квадрата до увеличения равна 5 дм. Площадь квадрата до увеличения равна S=x²=5²=25 (дм²)
1. Строим окружность с центром О.
2. Проведем диаметр в этой окружности ВС.
3. На окружности ставим точку А.
4. точку А соединим с Точками А и В. ΔАВС- прямоугольный, ∠ВАС - вписанный, опирается на диаметр. ∠ВАС=90°ю
5. С точки А опускаем перпендикуляр АD на диаметр ВС.
6. Проводим радиус АО.
Теперь переходим к решению задачи.
По условию длина окружности равна 2πR=52π: 2R=52; R=52/2=26 см.
ΔАОВ - равнобедренный; ОВ=ОА=26 см.
ΔАОD - прямоугольный, по теореме Пифагора
ОD²=ОА²-АD²=26²-24²=100; ОD=√100=10 см.
ВD=ОВ+ОD=26+10=36 см.
СD= ОС+ОD=26-10=16 см.
ответ: 16 см; 36 см.