Условие написано очень не понятно.
Что такое САО?Треугольник?Угол?
Если угол,то <САО никак не может быть равен 2DBO
Будем считать,что САО и DBO углы<) и они равны между собой
Заданию три недели,его никто не решил,т к не понятно условие
Итак,пересеклись два о резка,по условию задачи
АО=ВО;<САО=<ОВD
<АОС=<DOB,как вертикальные,образованные при пересечении двух отрезков
Следовательно,треугольники САО и DBO равны между собой по второму признаку равенства треугольников,если сторона и два прилежащих к ней угла одного треугольника равны стороне и двум прилежащим к ней углам другого треугольника,то эти треугольники равны между собой,а значит
АО=ОВ=5 см
DO=OC=7 cм
DB=AC=6 cм
Периметр-сумма всех сторон треугольника
Периметр САО=5+7+6=18 см
Объяснение:
1. Рассмотрим Δ ВЕС:
СЕ=ВС(по усл.)⇒ΔВЕС - равнобедренный(по опр.)
Найдем ∠ВСЕ. Он смежен с ∠ВСА, то есть в сумме они дают 180°(по св-ву смежных углов): 180-76=104
Найдем ∠СЕВ и ∠СВЕ. ∠СЕВ=∠СВЕ(по св-ву равнобедренного Δ)
∠СЕВ=
2. Рассмотрим Δ DAВ:
DA=АВ(по усл.)⇒Δ DAВ - равнобедренный(по опр.)
Найдем ∠DAВ. Он смежен с ∠ВАС(или является внешним углом треугольника АВС и равен сумме углов не смежных с ним), тогда:
180-48=132
Найдем ∠ADВ и ∠DBA. Они равны(по св-ву равноб.Δ)
∠ADВ=
3.Вернемся к исходному ΔDBE:
∠D=24
∠E=38
∠В - можно найти, сложив 24,56 и 38(найденные углы), а можно воспользоваться теоремой о сумме ∠Δ(сумма равна 180).
180-24-38=118
ответ: 24,38,118