Найдите углы правильного тридцатишестиугольника. Найдите длину окружности, описанной около правильного треугольника со стороной 9 см.
В окружность вписан правильный шестиугольник со стороной 9 см. Найдите сторону правильного треугольника, описанного около этой окружности.
Радиус окружности, описанной около правильного многоугольника, равен 8√2 см, а радиус вписанной в него окружности – 8 см. Найдите: 1) сторону многоугольника; 2) количество сторон многоугольника.
Сторона треугольника равна 5 см, а прилежащие к ней углы равны 45° и 105°. Найдите длины дуг, на которые делят описанную окружность треугольника его вершины.
Углы правильного треугольника срезали так, что получили правильный шестиугольник со стороной 8 см. Найдите сторону данного треугольника.
Противоположные стороны ВС и АД с диагональю ВД
образуют накрестлежащие ∠СВД=∠ВДА.
По условию противоположные ∠А=∠С.
В треугольниках АВД и СВД равны два угла. Сумма углов треугольника равна 180°, следовательно, и третий их угол равен.
Тогда в треугольниках АВД и СВД равны углы при общей стороне ВД.
Второй признак равенства треугольников:
треугольники равны, если у них равны два угла и сторона между ними.
Противоположные углы АВС и АДС четырехугольника АВСД каждый состоит из суммы равных углов:
∠СВД=∠ВДА по условию∠АВД=∠СДВ по доказанному; следовательно, углы АВС и АДС равны.