Диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам. Получается четыре прямоугольных треугольника, в которых гипотенузы равны стороне ромба, а катеты - половинам диагоналей. Тогда по Пифагору 26²= Х² +(Х-14)², где Х - половина большей диагонали. Из этого уравнения находим
Х = 7±√(49+240) = 17см.
Тогда половина меньшей диагонали равна 17-14 = 3см и площадь одного треугольника равна (1/2)*17*3 = 25,5см². Таких треугольников в ромбе четыре.
Прямоугольник АВСД, АС=ВД, АО=ВО=СО=ДО, ВК перпендикуляр на АС, ОМ перпендикуляр на АД, ОМ/ВД=1/4=1х/4х, ОД=1/2ВД, ОМ/ОД=1х/2х, треугольник АОД равнобедренный, ОМ-высота=медиане, АМ=МД, треугольник МОД прямоугольный, МД=корень(ОД в квадрате-ОМ в квадрате)=(4*х в квадрате-х в квадрате)=х*корень3, АД=МД*2=2х*корень3=ВС, треугольник АВД прямоугольный, АВ=корень(ВД в квадрате-АД в квадрате)=корень(16*х в квадрате-12*х в квадрате)=2х, треугольник АВС прямоугольный, ВК высота, АВ в квадрате=АК*АС, 4*х в квадрате=АК*4х, АК=х, КС=АС-АК=4х-х=3х, АК/КС=х/3х=1/3
ответ
ответ дан
ivanproh1
S = 102 см²
Объяснение:
Диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам. Получается четыре прямоугольных треугольника, в которых гипотенузы равны стороне ромба, а катеты - половинам диагоналей. Тогда по Пифагору 26²= Х² +(Х-14)², где Х - половина большей диагонали. Из этого уравнения находим
Х = 7±√(49+240) = 17см.
Тогда половина меньшей диагонали равна 17-14 = 3см и площадь одного треугольника равна (1/2)*17*3 = 25,5см². Таких треугольников в ромбе четыре.
Площадь ромба равна 4*25,5 = 102см².
Можно через диагонали:
S=(1/2)*D*d = (1/2)*34*6 = 102 см².