В равнобедренном треугольнике МNK( MK-основание) точки А и В являются серединами боковых сторон MN и NK соответственно. NH-медиана ∆MNK. Докажите, что ∆ANH=∆BNH.
1) ВС перпендикулярна АВ (смежные стороны квадрата). АВ принадлежит плоскости АМВ и плоскости квадрата. Плоскость АМВ перпендикулярна плоскости квадрата. Значит ВС перпендикулярна плоскости АМВ. АМ принадлежит плоскости АМВ, значит ВС перпендикулярна АМ. 2) Угол между наклонной прямой и плоскостью это угол между наклонной и ее проекцией на плоскость. То есть надо найти угол МСН. МН - высота треугольника АВМ. Это равнобедренный треугольник, значит МН - высота и медиана. Тогда по Пифагору МН=√(МВ²-ВН²), или МН=√(24-4)=2√5. НС=√(ВС²+ВН²), или НС=√(16+4)=2√5. Тогда tg(<МСН)=МН/НС или tg(<МСН)=2√5/2√5=1. ответ: угол равен 45°.
1) ВС перпендикулярна АВ (смежные стороны квадрата). АВ принадлежит плоскости АМВ и плоскости квадрата. Плоскость АМВ перпендикулярна плоскости квадрата. Значит ВС перпендикулярна плоскости АМВ. АМ принадлежит плоскости АМВ, значит ВС перпендикулярна АМ. 2) Угол между наклонной прямой и плоскостью это угол между наклонной и ее проекцией на плоскость. То есть надо найти угол МСН. МН - высота треугольника АВМ. Это равнобедренный треугольник, значит МН - высота и медиана. Тогда по Пифагору МН=√(МВ²-ВН²), или МН=√(24-4)=2√5. НС=√(ВС²+ВН²), или НС=√(16+4)=2√5. Тогда tg(<МСН)=МН/НС или tg(<МСН)=2√5/2√5=1. ответ: угол равен 45°.
1) Тк MN=NK, то 1/2*MN=1/2*NK . Тк А и В середины боковых сторон,то AN=BN .
2) NH-медиана ∆MNK а значит является биссектрисой => <АNH=<ВNН.
3) ∆ANH=∆BNH по двум сторонам и углу между ними : AN=BN см пункт 1, НN- общая, <АNH=<ВNН см. п2.