1) Находим радиус вписанной окружности, а для этого по формуле Герона находим площадь: S = √(p(p-a)(p-b)(p-c)). р = (6+7+5)/2 = 9 S = √(9(9-6)(9-7)(9-5)) = √216 = 14.69693846 r = S / p = 14.69693846 / 9 = 1.63299316. Так как треугольники подобны, то площади пропорциональны квадрату коэффициента пропорциональности. Найдем высоту треугольника АВС: Hb= 2S / b = 2*14.69693846 / 7 = 4.1991253. Высота треугольника ВКМ меньше на 2 радиуса: hb = Hb - 2r = 4.1991253 - 2*1.63299316 = 0.93313895 Коэффициент пропорциональности к = hb / Hb = 0.9331389 / 4.1991253 = 0.22222222, к² = 0.04938272. Тогда S(BKM) = 14.69693846* 0.04938272 = 0.725774739 кв.ед. А периметр равен Р(АВС)*к = (6+7+5)*0.22222222 = = 18*0.22222222 = 4. 2) В этой задаче не улавливается зависимость между заданными площадями треугольников. 3) В этой задаче что то неверно в условии. Если диаметр , проходящий через вершину В, делит хорду KL пополам, то эта хорда перпендикулярна диаметру. При этом она не пересекает сторону ВС - смотри прилагаемый чертёж.
Окружность с центром О.
ВС - диаметр.
А ∈ окружности с центром О.
∠АОС = 35°
Найти:∠ВАО - ?
Решение:Так как АО и ОВ - радиусы данной окружности с центром О ⇒ △ВОА - равнобедренный.
∠ОВА = ∠ВАО, по свойству равнобедренного треугольника.
Внешний угол треугольника равен сумме двух внутренних углов треугольника, не смежных с ним.
⇒ ∠ВАО + ∠ОВА = 35° (∠АОС = 35°, по условию)
Так как ∠ОВА = ∠ВАО, по свойству ⇒ ∠ОВА = ∠ВАО = 35°/2 = 17,5°
Так как АО и ОВ - радиусы данной окружности с центром О ⇒ △ВОА - равнобедренный.
∠ОВА = ∠ВАО, по свойству равнобедренного треугольника.
Сумма смежных углов равна 180°.
∠АОС смежный с ∠ВОА ⇒ ∠ВОА = 180° - 35° = 145°
Сумма углов треугольника равна 180°.
⇒ ∠ВАО = ∠ОВА = (180° - 145°)/2 = 17,5°
ответ: 17,5°.