Обозначим длину биссектрисы через х. один из острых углов через а , второй тогда 90-а. биссектрисса делит треугольник на два. теорема синусов для обоих треугольников. х/sin a = 15/ sin 45. x/ sin(90-a) = 20/ sin 45 sin 90-a= cos a откуда 15 sin a = 20 cos a tg a = 4/3 гипотенуза 35 катеты 28 и 21 пифагоров треугольник 3 4 5 с коэффициентом подобия 7. опустим высоту на гипотенузу. если tg a = 4/3 , то sin a = 4/5 cos a = 3/5. опять же из пифагорова треугольника. гипотенуза поделиться высотой на отрезки 21 * cos a = 12.6 28* cos(90-a)= 28* sin a= 22.4
1. Центральные углы АОЕ и ВОЕ, опирающиеся на дуги АЕ и ВЕ, соответственно, равны их градусным мерам. Рассмотрим треуг-ик АОВ. Он равнобедренный, т.к. АО и ВО - радиусы окружности. Отрезок ОЕ перпендикулярен КМ, т.к. КМ - касательная (касательная к окружности перпендикулярна к радиусу, проведенному в точке касания Е). Значит, ОЕ перпендикулярен и хорде АВ (если прямая перпендикулярна к одной из двух параллельных прямых КМ, то она перпендикулярна и к другой АВ. Прямые АВ и КМ параллельны по условию). Тогда ОЕ - высота равнобедренного треуг-ка АОВ. Пользуемся свойством равнобедренного треуг-ка о том, что высота его, проведенная к основанию, является медианой и биссектрисой. Значит <AOE=<BOE Следовательно, дуги АЕ и ВЕ, на которые опираются эти углы, также равны между собой: АЕ=ВЕ
2. Пользуемся свойством биссектрисы угла: каждая точка биссектрисы неразвернутого угла равноудалена от его сторон. Строим биссектрису угла ВАС, на ее пересечении с катетом ВС ставим точку Е. Помним о том, что расстояние от точки Е до прямой - длина перпендикуляра от этой точки до прямой. Перпендикуляр СЕ уже есть (угол С прямой по условию), строим перпендикуляр ЕС1. ЕС=ЕС1
ответ: угол ОМН = 40 град.