ΔОСВ равносторонний. В нем углы при вершинах С и В равны.т.к. ОС=ОВ= радиусы одной окружности. Т.е. равнобедренный получается. но поскольку углы С и В еще и по 60°в, то и угол О в этом треугольнике 60 °. Тогда внешний угол АОВ равен сумме двух внутренних ∠ В и ∠С, с ним не смежными, т.е. он равен 60°+60°=120°, а тогда в равнобедренном треуг. АОВ ∠ А =∠ В= 30 °,
(180°-120°)/2=30°, как углы при основании равнобедренного ΔАОВ, т.к. АО и ВО радиусы одной окружности и ∠DАС = 90°, т.к. радиус, проведенный в точку касания перпендикулярен касательной АD, значит, искомый ∠ DАВ =90°-30°=60°
ответ 60 °
Объяснение:
Відповідь:
BO ≈ 9,33; BC ≈ 13,64
Пояснення:
Розглянемо ΔABO. OB⊥AB (властивість радіуса, проведеного в точку дотику кола з січною). OB = AB * tg∠OAB = 10 * 0,9325 = 9,325.
∠BOH = 90°-43° = 47°.
Розглянемо ΔBAC. Він рівнобедрений, бо AB = AC (відрізки кута від вершини до точок дотику з вписаним колом рівні). AO - бісектриса (центр вписаного кола лежить на бісектрисі), а тому вона одночасно і медіана і висота. Тому ΔBOH - прямокутний.
BH = OB*sin∠BOH = 9,325*0,7314 = 6,8203.
BC = 2*BH = 2*6,8203 = 13,6406
AB= BC, AD=DC K=BC ADK & CDK=ABD