Сумма квадратов диагоналей равна квадрату стороны, умноженному на 4 (следствие из тождества параллелограмма). Пусть А и В-диагонали, тогда А:В=3:4, выразим А=3В:4, составим равенство (Сумма квадратов диагоналей равна квадрату стороны, умноженному на 4) А*А+ (3В:4)*(3В:4)=20*20*4 далее 9В*В:16+В*В=1600 далее 9В*В+16В*В=1600*16 отсюда 25В*В=25600 отсюда В= корень квадратный из 25600/25 =32. т.е одна диагональ = 32, вторая из пропорции А=3В/4= 3*32/4=24 Площадь ромба равна половине произведения его диагоналей. А*В/2=24*32/2=384
Обозначим параллелограмм ABCD ,биссектриса проведена из угла В к стороне AD в точке M .Угол А =180°-150°=30°(сумма соседних углов параллелограмма 180°) .∠ABM равен углу BMC =150°÷2=75°(так как BM - биссектриса) .∠BMA треугольника ABM равен 180°-75°-30°=75°,значит треугольник ABM -равнобедренный с основанием BM ,поэтому AB=AM=16 см .AD=AM+MD=16+5= 21 см .Площадь параллелограмма ABCD найдём по формуле S=a×b×sinα(где а и b стороны параллелограмма ,а α-угол между ними).S=16×21×sin30°=336×0,5=168 см² .
Сделаем рисунок. Обозначим вершины треугольника А, В, С, середины сторон, к которым проведены медианы, К на АС, М-на ВС, точку их пересечения - О. Медианы треугольника точкой их пересечения делятся в отношении 2:1, считая от вершины. Следовательно, ВО=АО, а оставшиеся части ОМ=ОК. Углы при О треугольников ВОМ и КОА равны как вертикальные. Треугольники АОК и ВОМ равны по двум сторонам и углу между ними. АК=ВМ. Но эти отрезки - половины АС и ВС. Следовательно, АС=ВС, и треугольник АВС, в котором две медианы равны, равнобедренный.
Пусть А и В-диагонали, тогда А:В=3:4, выразим А=3В:4, составим равенство (Сумма квадратов диагоналей равна квадрату стороны, умноженному на 4)
А*А+ (3В:4)*(3В:4)=20*20*4 далее 9В*В:16+В*В=1600 далее 9В*В+16В*В=1600*16 отсюда
25В*В=25600 отсюда В= корень квадратный из 25600/25 =32. т.е одна диагональ = 32, вторая из пропорции А=3В/4= 3*32/4=24
Площадь ромба равна половине произведения его диагоналей.
А*В/2=24*32/2=384