З точки М до площини а проведено похилі MN i MK, довжини яких відносяться як 5:6. Знайдіть відстань від точки М до площини а, якщо проекції похилих MN i MK дорівнюють відповідно 4 см і 3√3 см.
Пусть градусная мера одной части будет х. Тогда дуга АВ содержит 3х, дуга ВС - 4х и АС-5х. Окружность содержит 360°, ⇒ 3х+4х+5х=360° ⇒ х=30° 1) Дуга АВ равна: 30°*3=90° На нее опирается вписанный угол АСВ⇒ По свойству градусной величины вписанного угла он равен половине этой дуги: 90°:2=45° 2) Дуга ВС равна 30°*4=120° На эту дугу опирается вписанный угол САВ; он равен её половине: 120°:2=60° 3)Дуга АС равна 30°*5=150° На эту дугу опирается угол АВС, и он равен её половине: 150°:2=75° Углы треугольника АВС равны половинам градусных мер дуг, на которые они опираются: ∠С=45°, ∠ А= 60°, ∠ В=75°
Сподсчётами всё плохо что нашла то можно так: уравнение прямой, проходящей через две данные точки, имеет вид (у - у0) / (у1 - у0) = (х - х0) / (х1 - х0) подставив координаты точек, будем иметь (у - 5) / (11 - 5) = (х - 1) / (-2 - 1) (у - 5) / 6 = (х - 1) / (-3) -3(у - 5) = 6(х - 1) -3у + 15 = 6х - 6 6х + 3у - 21 = 0 2х + у - 7 = 0 - это уравнение прямой, проходящей через точки m(1; 5) и n(-2; 11). у = - 2х + 7 можно еще так: уравнение прямой имеет вид у = kx + b поставим координаты данных точек. получим 5 = k + b 11 = -2k + b вычитая из первого равенства второе, будем иметь -6 = 3k, отсюда k = -2. 5 = -2 + b, отсюда b = 7 подставив значения k и b в уравнение прямой, получим у = -2х + 7 ответ. у = -2х + 7ня
3см
Объяснение:
∆МNO- прямоугольный треугольник
По теореме Пифагора
МО²=МN²-NO²
MO²=(5x)²-4²
∆MOK- прямоугольный треугольник
По теореме Пифагора
МО²=МК²-ОК²
МО²=(6х²)-(3√3)²
Составляем уравнение:
25х²-16=36х²-27
11х²=11
х=1
МN=5x=5*1=5см
МО²=5²-4²=25-16=9см
МО=√9=3см