
2) ΔABE - равнобедренный ⇒ Опустим из точки В на основание АЕ высоту ВН ⇒ АН = НЕ = AE/2 = 8 см.
Высота равнобедренного треугольника, проведенная к его основанию, является медианой и биссектрисой.
CB⊥α ⇒ CB⊥(ABE)
Если прямая перпендикулярна плоскости, то она перпендикулярна любой прямой, лежащей в этой плоскости.
CB⊥AB, CB⊥BE, CB⊥AE, CB⊥BH
ΔCBA = ΔCBE по двум катетам:
СВ - общая сторона
АВ = ВЕ - из равнобедренного ΔАВЕ
Значит, АС = СЕ ⇒ ΔАСЕ - равнобедренный.
В ΔАСЕ опустим из точки С на основание АЕ высоту. Высота должна пройти через середину АЕ, то есть через точку Н.
Следовательно, расстояние от точки C до стороны треугольника AE равно СН, ρ (С;АЕ) = СН - искомое расстояние.
В ΔАВН (∠ВНА = 90°): По теореме Пифагора
АВ² = ВН² + АН²
ВН² = АВ² - АН² = 10² - 8² = 100 - 64 = 36
ВН = 6 см
В ΔСВН (∠СВН = 90°): По теореме Пифагора
СН² = СВ² + ВН² = 4² + 6² = 16 + 36 = 52
Значит, СН = √52 = 2√13 см.
ответ: 2√13 см
3) а) AD ⊥ пл. АВС, следовательно, AD ⊥ СВ;
AD ⊥ BC, AC⊥ CB, то по теореме о 3-х перпендикулярах DC ⊥ ВС, то есть треугольник CBD - прямоугольный.
б) DCB = 90*, BD2 = DC2 + BC; BD = (вектор)4 + 6 = 10
Объяснение:
50, а проекция наклонной равна 6 см. Чему равна длина перпендикуляра, проведённого из этой же точки к плоскости?
4) Если прямая перпендикулярна двум радиусам круга, как она расположена по отношению к самому кругу?
5) Сколько можно провести прямых перпендикулярных данной прямой через данную точку, если а) эта точка лежит на прямой; б) эта точка не лежит на прямой?
6) Как между собой располагаются две прямые перпендикулярные одной и той же плоскости?
7) Могут ли перпендикуляр и наклонная, проведённые из одной и той же точки, иметь равные длины?
Объяснение:
3)
Сумма углов прилежащих к боковой стороне трапеции равна 180°
<М+<К=180°. Отсюда следует
<К=180°-<М=180°-124°=56°
ответ: <К=56°
4)
АВ=CD=7 ед, по условию
AD=P(ABCD)-AB-CD-BC=27-5-2*7=8ед
ответ: AD=8ед
5)
ВС=МD=5см
Рассмотрим треугольник ∆АВМ
∆АВМ- прямоугольный треугольник
<ВМА=90°, ВМ- высота
<ВАМ=60°, по условию
Сумма острых углов в прямоугольном треугольнике равна 90°
<АВМ=90°-<ВАМ=90°-60°=30°
АМ- катет против угла <АВМ=30°;
АМ=АВ/2=4/2=2см.
АD=AM+MD=2+5=7см
ответ: AD=7см
6)
ВСDK- параллелограм.
ВС=КD;
CD=BK, свойства параллелограма.
АВ=АК=ВС=СD, по условию
Таким образом трапеция АВСD- делиться на 5 равных отрезка
АВ=Р(ABCD)/5=30/5=6см.
АD=2*AB=2*6=12см
ответ: AD=12см