М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
MarkTell
MarkTell
11.02.2021 08:39 •  Геометрия

стороны основания правильной четырехугольной пирамиды равны 26 а боковые ребра корень365. найдите площадь БОКОВОЙ поверхности

👇
Ответ:
ABI04
ABI04
11.02.2021
Для решения данной задачи, нам нужно вычислить площадь боковой поверхности правильной четырехугольной пирамиды. Давайте посмотрим, как можно это сделать.

Сначала, давайте изобразим данную пирамиду. С учетом условия, наша пирамида будет выглядеть следующим образом:

B
/ \
/ \
/_____\
A C D

Где A, B, C и D - вершины пирамиды, а BC = CD = DA = AB = 26 (стороны основания пирамиды) и AD = BD = BA = AC = корень из 365 (боковые ребра пирамиды).

Теперь, для рассчета площади боковой поверхности пирамиды, мы должны найти сумму площадей всех боковых треугольников. Так как пирамида правильная, то эти треугольники будут равнобедренными.
Мы можем разделить нашу пирамиду на 4 треугольника, каждый из которых будет представлять собой один из боковых треугольников. Рассмотрим один из таких треугольников ABC.

_____B
\ /
\/
A
|
C

Так как BC = AC = 26 и AB = корень из 365, мы можем применить теорему Пифагора для нахождения длины биссектрисы треугольника ABC. Пусть M - середина стороны BC. Тогда AM - биссектриса.

Используя теорему Пифагора, мы можем записать следующее уравнение:
AM^2 + MC^2 = AC^2

Так как MC = BM = BC/2 = 26/2 = 13, а AC = 26, подставим эти значения в наше уравнение:
AM^2 + 13^2 = 26^2

AM^2 + 169 = 676

AM^2 = 676 - 169

AM^2 = 507

AM = корень из 507

Теперь мы можем рассчитать площадь одного бокового треугольника ABC, используя формулу площади треугольника по длинам его сторон:
S(ABC) = корень из p(p-AB)(p-AC)(p-BC), где p - полупериметр треугольника.

Подставим известные значения в эту формулу:
p = (AB + AC + BC)/2
= (корень из 365 + 26 + 26)/2
= (19.105 + 52)/2
= 71.105/2
= 35.5525

Теперь, подставим полученные значения в формулу для площади треугольника ABC:
S(ABC) = корень из 35.5525(35.5525-корень из 365)(35.5525-26)(35.5525-26)

Теперь, решим эту формулу:
S(ABC) = корень из 35.5525(35.5525-19.105)(35.5525-26)(35.5525-26)
S(ABC) = корень из 35.5525*16.4475*9.5525*9.5525
S(ABC) = корень из 51663.7363515625
S(ABC) ≈ 227.2048

Так как наша пирамида состоит из 4 одинаковых треугольников, площадь боковой поверхности пирамиды будет равна 4*S(ABC). То есть:
S(боковой поверхности пирамиды) = 4*227.2048
S(боковой поверхности пирамиды) ≈ 908.8192

Ответ: Таким образом, площадь боковой поверхности данной правильной четырехугольной пирамиды равна примерно 908.8192 единиц квадратных.
4,8(93 оценок)
Проверить ответ в нейросети
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ