В равнобедренном треуг углы при основании равны. пусть АВС-треуг, угол А и угол С углы при оснвании=50 град. тогда угол В = 180-50-50=80 град. опустим высоту АК из угла А на сторону ВС. рассмотрим треугольник АКС, Угол АКС=90 град, угол С=50 град, угол КАС=180-90-50=40 град, значит угол ВАК=50-40=10 град. аналогично решаем задачу, если опустить высоту из углаС., так как треуг равнобыдренн, то улы получившиеся будут равны как в первом случае. Если мы опустим высоту из вершины В то она буде являться как биссектриссой, так и медианой.
А) О - середина АС ⇒ ОС/АС = 1/2 ВС = АЕ (АВСЕ - прямоугольник) АЕ = ЕД (по условию)⇒ ВС/АД = 1/2
ΔАСД - равнобедренный (СЕ - высота и медиана)⇒ АС = СД ВО = АС/2 так как ВО половина диагонали ВЕ прямоугольника АВСЕ ⇒ ⇒ВО/СД = 1/2 ⇒ ΔВОС подобен ΔАСД, а значит и BO/BC = CD/AD
б) ΔВОС подобен ΔАСД (доказано в пункте а) коэффициент подобия этих треугольников к = ВО/СД = 1/2 отношение площадей равно квадрату коэффициента подобия Sboc/Sacd = k² = 1/4 Saobcd = Sboc + Sacd = S из отношения Sboc/Sacd =1/4 ясно, что площадь ΔАСД составляет 4/5 площади АОВСД, значит Sacd = 4S/5
Пусть А - начало координат
Ось Х - АВ
Ось Y - AD
Ось Z - AA1
Координаты точек
А1 (0;0;1)
B1 (1;0;1)
D1(0;1;1)
C1(1;1;1)
B(1;0;0)
Уравнение плоскости АВ1D1
- проходит через начало координат
ax+by+cz=0
Подставляем координаты точек
B1 D1
a+c=0
b+c=0
Пусть с = -1 тогда а =1 b =1
x+y-z=0
Уравнение плоскости ВА1С1
ax+by+cz+d=0
Подставляем координаты точек
В А1 С1
а+d = 0
c+ d = 0
a+b+c+d= 0
Пусть d = -1 тогда а=1 c=1 b= -1
x-y+z-1=0
Косинус искомого угла между плоскостями равен
| (1;1;-1) * (1;-1;1) | / | (1;1;-1) | / | (1;-1;1) | = | 1-1-1 | / √3 / √3 = 1/3
Угол arccos (1/3)