М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Лчший
Лчший
10.02.2023 22:57 •  Геометрия

АВС равнобедренный треугольник ,ВС основание <А70°. Найдите остальные углы треугольника.

👇
Ответ:
danikmy12
danikmy12
10.02.2023

И на рисунке ясно показано что если треугольник равнобедренный то его боковые стороны равны и углы летающие при основании , то есть боковые углы

Если мы знаем угол при вершине

то чтобы найти углы при основании  нужно из 180° вычесть угол при вершине то есть 70° и результат разделить на 2.

180°-70°=110°

110°÷2=55°

ответ:55°; 55°


АВС равнобедренный треугольник ,ВС основание <А70°. Найдите остальные углы треугольника.
4,6(96 оценок)
Открыть все ответы
Ответ:
slarina171
slarina171
10.02.2023
Я думаю, задание надо читать так: В основании пирамиды лежит прямоугольник со сторонОЙ 6 см.Основанием высоты пирамиды является центр описанной окружности с радиусом 5 см.Найдите объем пирамиды, если ее высота равна 9 см. Тогда решение следующее:
Vпир.=1/3Sосн.*h (одна третья  площади основания пирамиды на высоту пирамиды).
Чтобы найти площадь основания, надо найти вторую сторону прямоугольника. По т. Пифагора АВ²=АС²-ВС² АС=d=2c=10см.
АВ²=100-36=64⇒АВ=√64=8см.
S осн.=АВ*ВС=6*8=48см²
Vпир.=1/3*Sосн*h=1/3*48*9=144cм³
Восновании пирамиды дежит прямоугольник со сторонами 6 см.основанием высоты пирамиды-центр описаной
4,4(19 оценок)
Ответ:
хааа2
хааа2
10.02.2023
Уравнение окружности, касающейся OY и имеющей центр в точке (x_0, y_0) можно записать как 
(x-x_0)^2+(y-y_0)^2=(x_0)^2
(Пересекает OY ровно в одной точке - (0,y_0), значит касается в этой точке)
Эта окружность проходит через точку (-4,0):
(4+x_0)^2+(y_0)^2=(x_0)^2\\\\y_0^2=-8(x_0+2)\\\\y_0=\pm2\sqrt{-2x_0-4}\\x_0\in(-\infty;-2]

Итак, у нас вышло семейство окружностей:
(x-x_0)^2+(y\pm2\sqrt{-2x_0-4})=x_0^2\\x_0\in(-\infty;2]
Все они подходят под условия, так некоторые из них:

Окружность с центром в точке (-2;0) и радиусом 2 касается OY в точке (0;0) и проходит через точку (-4;0)

Окружность с центром в точке (-4;4) и радиусом 4 касается OY в точке (0;4) и проходит через точку (-4;0)

Окружность с центром в точке (-4;-4) и радиусом 4 касается OY в точке (0;-4) и проходит через точку (-4;0)

Окружность с центром в точке (-10;8) и радиусом 10 касается OY в точке (0;8) и проходит через точку (-4;0)
4,8(55 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ