5.В равнобедренном треугольнике АВС с основанием АС боковая сторона АВ равна 16 см,а высота ВD,проведённая к основанию ,равна 3.Найдите основание и углы треугольника
Достроим правильный шестиугольник до треугольника. Сторона полученного треугольника в три раза больше стороны правильного шестиугольника*, 12√3. Вписанная окружность касается сторон правильного треугольника в их серединах. Стороны вписанного в эту окружность правильного треугольника равны средним линиям треугольника со стороной 12√3, то есть 6√3.
----------------------------------------------- *) Сумма углов многоугольника 180(n-2), для шестиугольника 720, углы правильного шестиугольника равны 720/6=120. Углы при основании треугольников, образованных продолжениями сторон правильного шестиугольника, равны 180-120=60, треугольники равносторонние.
Пусть для определенности A находится между B и D. Поскольку угол между касательной DC и хордой AC опирается на ту же дугу, что и вписанный угол ABC, делаем вывод о равенстве этих углов. А так как угол D в треугольниках DAC и DCB общий, делаем вывод о подобии этих треугольников по двум углам. Обозначив DA через x, получаем равенство x:d=b:a, значит, отрезок длиной x можно построить с циркуля и линейки (поскольку мы решаем сложную задачу, умение делать стандартные построения с циркуля и линейки предполагается). Теперь все просто: в ΔDAC нам известны все стороны, так что его можно построить. Продолжая DA за точку A, ищем пересечение окружности с центром в точке C и радиусом a с указанным продолжением - это будет точка B.
-----------------------------------------------
*) Сумма углов многоугольника 180(n-2), для шестиугольника 720, углы правильного шестиугольника равны 720/6=120. Углы при основании треугольников, образованных продолжениями сторон правильного шестиугольника, равны 180-120=60, треугольники равносторонние.