4. одна сторона х, другая х+12, полупериметр 64/2=32, отсюда уравнение. х+х+12=32, х=20/2=10, одна сторона 10 см, другая 32-10=22/см/.
ответ 10см и 22 см
52. Меньшая диагональ лежит против угла в 60°, значит, треугольник, образованный меньшей диагональю и двумя сторонами ромба, равны между собой, т.к. два других угла в этом треугольнике тоже 60°, и он получается правильным, тогда меньшая диагональ равна длине стороны ромба 80/4=20/см/, т.к. все стороны ромба равны между собой.
ответ 20см
6. Рассмотрим треугольник, составленный из диагонали, меньшей и большей сторон прямоугольника. Меньшая сторона лежит против угла в 90°-60°=30° и равна половине гипотенузы, которой является диагональ прямоугольника, значит, меньшая сторона равна 4/2=2/см/
ответ 2см
7. одна. меньшая сторона х, большая х+7, полупериметр 54/2=27, тогда х+х+7=27, х=20/2=10, одна сторона 10 см, другая 10+7=17/см/
ответ 10 см и 17 см
8. /единственная задача, в которой есть именованные величины, но заранее прощения за невозможность поставить рисунок, у меня не работает вложение, в которое можно отправить рис./, поэтому убедительная нарисовать самостоятельно рис. я рассказываю, как. Берете вершину А, проводите АЕ, Е лежит на ВС, а дальше все легко. если обозначим ЕС за х, то ВЕ=3х, Но т.к. биссектриса прямого угла делит его на два угла по 45°, то в треугольнике АВЕ углы А и Е по 45°, значит, ВЕ=АВ=3х, тогда сторона ВС=х+3х=4х. т.е. две стороны в прямоугольнике по 3х, и две по 4х, отсюда уравнение
2*(3х+4х)=42; х=42/14=3 одна сторона 3*3=9/ см/, другая , смежная ей 4*3=12/см/
ответ 9см, 12 см
9. Расстояние между противоположными сторонами - высота ромба. Значит, в треугольнике, образованном высотой, стороной и проекцией стороны на другую сторону, один угол 90°, а тот, что лежит против высоты в 15 см, равен 30°, т.к. высота в 2 раза меньше стороны ромба в30см/ это гипотенуза в указанном треугольнике/. Т.о., углы ромба - острые по 30°, тупые по 180°-30°=150°, большая диагональ лежит против 150°, значит, у треугольников, на которые эта диагональ делит ромб, такие углы:150°; и два угла по (180°-150°)/2=15°, или попроще, диагональ является биссектрисой внутренних углов, поэтому опять таки 30°/2=15°- это острые углы указанных треугольников.
ответ 150°, 15°,15°
а) В ∆ АВС отрезок EF - средняя линия, так как соединяет середины
сторон АВ и АС.
ЕF параллельна ВС. Отрезок MD - секущая.
Накрест лежащие углы при пересечении параллельных прямых секущей равны. ∠MDF=∠DMC.
По свойству касательных из одной точки СМ=CN и ∆ МСN - равнобедренный и углы при его основании MN равны (свойство): ∠NMC=∠MNC.
∠MNC=∠FND (вертикальные). Отсюда
∠MDF=∠FND. Треугольник DFN- равнобедренный с основанием DN, FN=FD. Что и требовалось доказать.
б) В любом треугольнике расстояние от вершины треугольника до точки касания вписанной окружности со стороной треугольника, выходящей из данной вершины, есть разность полупериметра треугольника и стороны, противолежащей данной вершине:
То есть CN = (AC + BC+AB)/2 - AB = (AC+BC-AB)/2.
FN=FC-CN = AC/2 - (AC+BC-AB)/2 = AB/2-BC/2.
Но FN = FD (доказано выше) и
ED=EF+FD=EF+FN = BC/2+AB/2-BC/2=AB/2=BE.
Треугольник BED равнобедренный. (ВЕ=ED).
Проведем DK параллельно АВ. Тогда четырехугольник DEBK - ромб и его площадь равна S=BE²*Sin (ABC) = 100*√3/2 =50√3.
Треугольник ВЕD - половина ромба ВЕDK и его площадь равна
Sbed=25√3.
Для второго варианта, при АВ<ВС:
а). EF параллельна ВС, MN - секущая. <NDF=<NMC (соответственные углы). СМ=CN (касательные из одной точки) => треугольник MNC
равнобедренный и <NMC=<MNC (углы при основании). Отсюда <MNC=<NDF и треугольник DFN - равнобедренный с основанием ND.
FN=FD. Что и требовалось доказать.
б). CN = (AC+BC+AB)/2 - AB = (AC+BC-AB)/2.
FN=CN-CF = (AC+BC-AB)/2 - AC/2 - = BC/2-АВ/2.
Но FN = FD (доказано выше) и
ED=EF-FD=EF-FN = BC/2-BC/2+АВ/2=AB/2=BE.
То есть треугольник BED равнобедренный. (ВЕ=ED).
Проведем DK параллельно АВ. Тогда четырехугольник DEBK - ромб и его площадь равна S=BE²*Sin (ABC) = 100*√3/2 =50√3.
Треугольник ВЕD - половина ромба ВЕDK и его площадь равна
Sbed=25√3.