Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 6 и 8. Площадь поверхности этого параллелепипеда равна 488. Найдите третье ребро, выходящее из той же вершины.
По условию АМ=МС ВС на 2 мм больше АВ Значит, Р(ΔАВМ) меньше Р(ΔВСМ) на 2 мм ответ.Р(ΔВСМ)=16+ 2=18 мм 2) Р(ΔАВD)=АВ+ВD+АD Р(ΔВDC)=ВС+ВD+DС
По условию периметры отличаются на 5 см. Поскольку ВD общая и в том и в другом периметрах, то разница может быть за счет двух оставшихся сторон. 1)Либо АВ+AD больше BC +CD на 5 см 2) либо АВ+AD меньше BC +CD на 5 см
Так как АВ+AD =28 cм, то 1) BC +CD =28 + 5=33 см 2)BC +CD =28 - 5=23 см
ответ. 1) Р(ΔАВС)=АВ+AD+DC+BC=28+33=61 см 2)Р(ΔАВС)=АВ+AD+DC+BC=28+23=51 см
Если диагональ перпендикулярна боковой стороне, то она делит трапецию на два треугольника: прямоугольный и равнобедренный. Так как угол с основанием она образует в 30 градусов, то боковая сторона как катет прямоугольного треугольника, противолежащий углу в 30 градусов равен 5/2 = 2,5 см. Так как второй треугольник равнобедренный, то боковая сторона равна меньшему основанию, значит, меньшее основание трапеции также равно 2,5 см. Из прямоугольного треугольника по теореме Пифагора найдем длину диагонали: √5² - (5/2)² = 5√3/2. ответ: боковая сторона 2,5 см. меньшее основание 2,5 см. диагональ 5√3/2
14ед
Объяснение:
Пусть третье ребро будет х.
Из формулы нахождения площади поверхности параллелепипеда
S=2(ab+ac+bc), где а=6ед; b=8ед; с=х.
Уравнение:
2(6*8+6х+8х)=488
48+14х=244
14х=196
х=14 ед третье ребро